Skip to main content
Log in

Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

N-Acetyl-l-glutamate kinase (EC 2.7.2.8) is first committed in the specific l-arginine pathway of Corynebacterium sp. A limited increase of l-arginine production for the argB overexpression in the engineering C. creantum SYPA-CCB strain indicated that l-arginine feedback inhibition plays an influence on the l-arginine production. In this study, we have performed site-directed mutagenesis of the key enzyme (NAGK) and the three mutations (E19R, H26E and H268D) exhibited the increase of I R0.5 efficiently. Thereby, the multi-mutated NAGKM3 (including E19R/H26E/H268D) was generated and its I R0.5 of l-arginine of the mutant was increased remarkably, whereas the NAGK enzyme activities did not declined. To get a feedback-resistant and robust l-arginine producer, the engineered strains SYPA-CCBM3 were constructed. Introducing the argBM3 gene enabled the NAGK enzyme activity insensitive to the intracellular arginine concentrations resulted in an enhanced arginine biosynthesis flux and decreased formation of by-products. The l-arginine synthesis was largely enhanced due to the overexpression of the argBM3, which is resistant to feedback resistant by l-arginine. Thus l-arginine production could reach 45.6 g/l, about 41.7% higher compared with the initial strain. This is an example of up-modulation of the flux through the l-arginine metabolic pathway by deregulating the key enzyme of the pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NAGK:

N-Acetyl-l-glutamate kinase

Ccre_NAGK:

N-Acetyl-l-glutamate kinase of Corynebacterium crenatum

WT:

Wild-type

NAG:

N-Acetyl-l-glutamate

I R0.5 :

Inhibition constant (the l-arginine concentration yields 50% inhibition)

EMS:

Ethylmethane sulfonate

DCW:

Dry cell weight

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  • Benkert B, Quack N, Schreiber K, Jaensch L, Jahn D, Schobert M (2008) Nitrate-responsive NarX-NarL represses arginine-mediated induction of the Pseudomonas aeruginosa arginine fermentation arcDABC operon. Microbiol SGM 154:3053–3060. doi:10.1099/mic.0.2008/018929-0

    Article  CAS  Google Scholar 

  • Blombach B, Hans S, Bathe B, Eikmanns BJ (2009) Acetohydroxyacid synthase, a novel target for improvement of L-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75(2):419–427. doi:10.1128/aem.01844-08

    Article  PubMed  CAS  Google Scholar 

  • Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79(3):471–479. doi:10.1007/s00253-008-1444-z

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cunin R, Glansdorff N, Pierard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50(3):314–352. doi:0146-0749/86/090314-39$02.00/0

    PubMed  CAS  Google Scholar 

  • Elisakova V, Patek M, Holatko J, Nesvera J, Leyval D, Goergen J-L, Delaunay S (2005) Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 71(1):207–213. doi:10.1128/AEM.71.1.207-213.2005

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Murga ML, Gil-Ortiz F, Llacer JL, Rubio V (2004) Arginine biosynthesis in Thermotoga maritima: Characterization of the arginine-sensitive N-acetyl-l-glutamate kinase. J Bacteriol 186(18):6142–6149. doi:10.1128/jb.186.18.6142-6149.2004

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Murga ML, Rubio V (2008) Basis of arginine sensitivity of microbial N-acetyl-l-glutamate kinases: mutagenesis and protein engineering study with the Pseudomonas aeruginosa and Escherichia coli enzymes. J Bacteriol 190(8):3018–3025. doi:10.1128/jb.01831-07

    Article  PubMed  CAS  Google Scholar 

  • Glansdorff N, Xu Y (2007) Microbial arginine biosynthesis: pathway, regulation and industrial production. Microbiol Monogr 5:219–257. doi:10.1007/7171_2006_061

    Article  Google Scholar 

  • Grillo MA, Colombatto S (2004) Arginine revisited: minireview article. Amino Acids 26(4):345–351. doi:10.1007/s00726-004-0081-9

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Kurer V, Leisinger T (1972) N-acetylglutamate synthetase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. Eur J Biochem 31(2):290–295. doi:10.1111/j.1432-1033.1972.tb02531.x

    Article  PubMed  CAS  Google Scholar 

  • Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104(1–3):155–172. doi:10.1016/s0168-1656(03)00149-4

    Article  PubMed  CAS  Google Scholar 

  • Holatko J, Elisakova V, Prouza M, Sobotka M, Nesvera J, Patek M (2009) Metabolic engineering of the l-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation. J Biotechnol 139(3):203–210. doi:10.1016/j.jbiotec.2008.12.005

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M (2003) Amino acid production processes. Adv Biochem Eng Biotechnol 79:1–35. doi:10.1007/3-540-45989-8_1

    PubMed  CAS  Google Scholar 

  • Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum l-arginine and l-citrulline producer. Appl Environ Microbiol 75(6):1635–1641. doi:10.1128/aem.02027-08

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104(1–3):5–25

    Article  PubMed  CAS  Google Scholar 

  • Lu C-D (2006) Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biot 70(3):261–272. doi:10.1007/s00253-005-0308-z

    Article  CAS  Google Scholar 

  • Park J, Lee S (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19(5):454–460. doi:10.1016/j.copbio.2008.08.007

    Article  PubMed  CAS  Google Scholar 

  • Ramón-Maiques S, Fernández-Murga ML, Gil-Ortiz F, Vagin A, Fita I, Rubio V (2006) Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. J Mol Biol 356(3):695–713. doi:10.1016/j.jmb.2005.11.079

    Article  PubMed  Google Scholar 

  • Sakanyan V, Petrosyan P, Lecocq M, Boyen A, Legrain C, Demarez M, Hallet JN, Glansdorff N (1996) Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway. Microbiology 142(Pt 1):99–108. doi:10.1099/13500872-142-1-99

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sun L, Wen X, Tan Y, Li H, Yang X, Zhao Y, Wang B, Cao Q, Niu C, Xi Z (2009) Site-directed mutagenesis and computational study of the Y366 active site in Bacillus subtilis protoporphyrinogen oxidase. Amino Acids 37(3):523–530. doi:10.1007/s00726-009-0256-5

    Article  PubMed  CAS  Google Scholar 

  • Tauch A, Kirchner O, Loffler B, Gotker S, Puhler A, Kalinowski J (2002) Efficient electrotransformation of Corynebacterium diphtheriae with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45(5):362–367. doi:10.1007/s00284-002-3728-3

    Article  PubMed  CAS  Google Scholar 

  • Utagawa T (2004) Production of arginine by fermentation. J Nutr 134:2854S–2867S

    PubMed  CAS  Google Scholar 

  • Wendisch VF, Glansdorff N, Xu Y (2007) Microbial arginine biosynthesis: pathway, regulation and industrial production. Microbiol Monogr 5:219–257. doi:10.1007/7171_2006_061

    Google Scholar 

  • Wendisch VF (2006) Genetic regulation of Corynebacterium glutamicum metabolism. J Microbiol Biotech 16(7):999–1009

    CAS  Google Scholar 

  • Xu H, Dou WF, Xu HY, Zhang XM, Rao ZM, Shi ZP, Xu ZH (2009) A two-stage oxygen supply strategy for enhanced l-arginine production by Corynebacterium crenatum based on metabolic fluxes analysis. Biochem Eng J 43(1):41–51. doi:10.1016/j.bej.2008.08.007

    Article  CAS  Google Scholar 

  • Xu MJ, Rao ZM, Xu H, Lan CY, Dou WF, Zhang XM, Xu HY, Jin JA, Xu ZH (2011) Enhanced production of l-arginine by expression of Vitreoscilla hemoglobin using a novel expression system in Corynebacterium crenatum. Appl Biochem Biotechnol 163(6):707–719. doi:10.1007/s12010-010-9076-z

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the High-tech Research and Development Programs of China (2007AA02Z207), the National Basic Research Program of China (2007CB707804), the National Natural Science Foundation of China (30970056), the Program for New Century Excellent Talents in University (NCET-07-0380, NCET-10-0459), the Fundamental Research Funds for the Central Universities (JUSRP31001), the Program of Introducing Talents of Discipline to Universities (111-2-06) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Rao or Zhenghong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Rao, Z., Dou, W. et al. Site-directed mutagenesis and feedback-resistant N-acetyl-L-glutamate kinase (NAGK) increase Corynebacterium crenatum L-arginine production. Amino Acids 43, 255–266 (2012). https://doi.org/10.1007/s00726-011-1069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1069-x

Keywords

Navigation