Skip to main content

Advertisement

Log in

Imaging tumor-induced sentinel lymph node lymphangiogenesis with LyP-1 peptide

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Lymphangiogenesis in tumor-draining lymph nodes (LNs) starts before the onset of metastasis and is associated with metastasis to distant LNs and organs. In this study, we aimed to visualize tumor-induced lymphangiogenesis with a tumor lymphatics-specific peptide LyP-1. The LyP-1 peptide was labeled with a near-infrared fluorophore (Cy5.5) for optical imaging. At days 3, 7, 14 and 21 after subcutaneous 4T1 tumor inoculation, Cy5.5-LyP-1 was administered through the middle phalanges of the upper extremities of the tumor-bearing mice. At 45 min and 24 h postinjection, brachial LN fluorescence imaging was performed. Ex vivo fluorescence images were acquired for quantitative analysis of the fluorescence intensity. Tumor-induced lymphangiogenesis was confirmed by LYVE-1 immunostaining and increased size of tumor side brachial LNs. Cy5.5-LyP-1 staining in LNs co-localized with LYVE-1, suggesting lymphatics-specific binding of LyP-1 peptide. The brachial LNs were clearly visualized by optical imaging at both time points. The tumor side LNs showed significantly higher fluorescence intensities than the contralateral brachial LNs at days 7, 14, and 21, but not day 3 after tumor inoculation. At day 21 after tumor inoculation, the average signal of tumor-draining LNs was 78.0 ± 2.44, 24.3 ± 5.43, 25.6 ± 0.25 (×103 photon/cm2/s) using Cy5.5-LyP-1, Cy5.5-LyP-1 with blocking, and Cy5.5 only, respectively. Tumor-draining brachial LNs showed extensive growth of lymphatic sinuses throughout the cortex and medulla. Use of LyP-1 based imaging probes with optical imaging offers a useful tool for the study of tumor-induced lymphangiogenesis. LyP-1 may serve as a marker of lymphangiogenesis useful in detecting “high risk” LNs before tumor metastasis and after micro-metastasis, as well as for screening potential anti-lymphatic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52(6):1399–1405

    PubMed  CAS  Google Scholar 

  • Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JA, Waggoner AS, Bruchez MP (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18(2):389–396

    Article  PubMed  CAS  Google Scholar 

  • Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M, Jackson DG (1999) Lyve-1, a new homologue of the cd44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144(4):789–801

    Article  PubMed  CAS  Google Scholar 

  • Eiber M, Beer AJ, Holzapfel K, Tauber R, Ganter C, Weirich G, Krause BJ, Rummeny EJ, Gaa J (2010) Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted mr-imaging. Invest Radiol 45(1):15–23

    Article  PubMed  Google Scholar 

  • Harrell MI, Iritani BM, Ruddell A (2007) Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 170(2):774–786

    Article  PubMed  Google Scholar 

  • Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M (2005) Vegf-a induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201(7):1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) Vegf-c-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109(3):1010–1017

    Article  PubMed  CAS  Google Scholar 

  • Hirakawa S, Detmar M, Kerjaschki D, Nagamatsu S, Matsuo K, Tanemura A, Kamata N, Higashikawa K, Okazaki H, Kameda K, Nishida-Fukuda H, Mori H, Hanakawa Y, Sayama K, Shirakata Y, Tohyama M, Tokumaru S, Katayama I, Hashimoto K (2009) Nodal lymphangiogenesis and metastasis: Role of tumor-induced lymphatic vessel activation in extramammary paget’s disease. Am J Pathol 175(5):2235–2248

    Article  PubMed  Google Scholar 

  • Ishii H, Chikamatsu K, Sakakura K, Miyata M, Furuya N, Masuyama K (2010) Primary tumor induces sentinel lymph node lymphangiogenesis in oral squamous cell carcinoma. Oral Oncol 46(5):373–378

    Article  PubMed  CAS  Google Scholar 

  • Jaffer FA, Weissleder R (2005) Molecular imaging in the clinical arena. JAMA 293(7):855–862

    Article  PubMed  CAS  Google Scholar 

  • Ji RC (2006) Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 25(4):677–694

    Article  PubMed  Google Scholar 

  • Ji RC (2009) Lymph node lymphangiogenesis: a new concept for modulating tumor metastasis and inflammatory process. Histol Histopathol 24(3):377–384

    PubMed  CAS  Google Scholar 

  • Kosaka N, Ogawa M, Sato N, Choyke PL, Kobayashi H (2009) In vivo real-time, multicolor, quantum dot lymphatic imaging. J Invest Dermatol 129(12):2818–2822

    Article  PubMed  CAS  Google Scholar 

  • Laakkonen P, Porkka K, Hoffman JA, Ruoslahti E (2002) A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med 8(7):751–755

    PubMed  CAS  Google Scholar 

  • Laakkonen P, Akerman ME, Biliran H, Yang M, Ferrer F, Karpanen T, Hoffman RM, Ruoslahti E (2004) Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc Natl Acad Sci USA 101(25):9381–9386

    Article  PubMed  CAS  Google Scholar 

  • Laakkonen P, Zhang L, Ruoslahti E (2008) Peptide targeting of tumor lymph vessels. Ann N Y Acad Sci 1131:37–43

    Article  PubMed  CAS  Google Scholar 

  • Licha K, Debus N, Emig-Vollmer S, Hofmann B, Hasbach M, Stibenz D, Sydow S, Schirner M, Ebert B, Petzelt D, Buhrer C, Semmler W, Tauber R (2005) Optical molecular imaging of lymph nodes using a targeted vascular contrast agent. J Biomed Opt 10(4):41205

    Article  PubMed  Google Scholar 

  • Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-c-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20(4):672–682

    Article  PubMed  CAS  Google Scholar 

  • McElroy M, Hayashi K, Garmy-Susini B, Kaushal S, Varner JA, Moossa AR, Hoffman RM, Bouvet M (2009) Fluorescent lyve-1 antibody to image dynamically lymphatic trafficking of cancer cells in vivo. J Surg Res 151(1):68–73

    Article  PubMed  CAS  Google Scholar 

  • Mumprecht V, Honer M, Vigl B, Proulx ST, Trachsel E, Kaspar M, Banziger-Tobler NE, Schibli R, Neri D, Detmar M (2010) In vivo imaging of inflammation- and tumor-induced lymph node lymphangiogenesis by immuno-positron emission tomography. Cancer Res 70(21):8842–8851. doi:10.1158/0008-5472

    Article  PubMed  CAS  Google Scholar 

  • Qian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ, Ditlev J, Tsarfaty I, Hudson E, Jackson DG, Petillo D, Chen J, Resau JH, Teh BT (2006) Preparing the “Soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 66(21):10365–10376

    Article  PubMed  CAS  Google Scholar 

  • Sainte-Marie G, Peng FS, Belisle C (1982) Overall architecture and pattern of lymph flow in the rat lymph node. Am J Anat 164(4):275–309

    Article  PubMed  CAS  Google Scholar 

  • Schirrmeister H, Kotzerke J, Vogl F, Buck A, Czech N, Koretz K, Helm G, Kreienberg R, Kuhn T (2004) Prospective evaluation of factors influencing success rates of sentinel node biopsy in 814 breast cancer patients. Cancer Biother Radiopharm 19(6):784–790

    Article  PubMed  Google Scholar 

  • Sharma R, Wendt JA, Rasmussen JC, Adams KE, Marshall MV, Sevick-Muraca EM (2008) New horizons for imaging lymphatic function. Ann N Y Acad Sci 1131:13–36

    Article  PubMed  CAS  Google Scholar 

  • Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG (2001) Vegf-d promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7(2):186–191

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Unno N, Yamamoto N, Nishiyama M, Sagara D, Tanaka H, Mano Y, Konno H (2009) Impaired lymphatic function recovered after great saphenous vein stripping in patients with varicose vein: venodynamic and lymphodynamic results. J Vasc Surg 50(5):1085–1091

    Article  PubMed  Google Scholar 

  • Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476

    Article  PubMed  CAS  Google Scholar 

  • Tao K, Fang M, Alroy J, Sahagian GG (2008) Imagable 4t1 model for the study of late stage breast cancer. BMC Cancer 8:228

    Article  PubMed  Google Scholar 

  • Ting R, Aguilera TA, Crisp JL, Hall DJ, Eckelman WC, Vera DR, Tsien RY (2010) Fast 18F labeling of a near-infrared fluorophore enables positron emission tomography and optical imaging of sentinel lymph nodes. Bioconjug Chem 21(10):1811–1819

    Article  PubMed  CAS  Google Scholar 

  • Van den Eynden GG, Vandenberghe MK, van Dam PJ, Colpaert CG, van Dam P, Dirix LY, Vermeulen PB, Van Marck EA (2007) Increased sentinel lymph node lymphangiogenesis is associated with nonsentinel axillary lymph node involvement in breast cancer patients with a positive sentinel node. Clin Cancer Res 13(18 Pt 1):5391–5397

    Article  PubMed  Google Scholar 

  • Willard-Mack CL (2006) Normal structure, function, and histology of lymph nodes. Toxicol Pathol 34(5):409–424

    Article  PubMed  Google Scholar 

  • Winnard PT Jr, Pathak AP, Dhara S, Cho SY, Raman V, Pomper MG (2008) Molecular imaging of metastatic potential. J Nucl Med 49(Suppl 2):96S–112S

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported in part by the Intramural Research Program of the National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), the International Cooperative Program of the National Science Foundation of China (NSFC) (81028009). F.Z and G.L. are partially supported by the NSFC grant No. 30930028. G.N. currently is an Imaging Sciences Training Program (ISTP) Fellow jointly supported by the Radiology and Imaging Sciences Department, NIH Clinical Center and the Intramural Research Program, NIBIB, NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangming Lu or Xiaoyuan Chen.

Additional information

F. Zhang and G. Niu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Niu, G., Lin, X. et al. Imaging tumor-induced sentinel lymph node lymphangiogenesis with LyP-1 peptide. Amino Acids 42, 2343–2351 (2012). https://doi.org/10.1007/s00726-011-0976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0976-1

Keywords

Navigation