Skip to main content
Log in

Protective functions of taurine against experimental stroke through depressing mitochondria-mediated cell death in rats

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Taurine, an abundant amino acid in the nervous system, is reported to reduce ischemic brain injury in a dose-dependent manner. This study was designed to investigate whether taurine protected brain against experimental stroke through affecting mitochondria-mediated cell death pathway. Rats were subjected to 2-h ischemia by intraluminal filament, and then reperfused for 22 h. It was confirmed again that taurine (50 mg/kg) administered intravenously 1 h after ischemia markedly improved neurological function and decreased infarct volume at 22 h after reperfusion. In vehicle-treated rats, the levels of intracellular ATP and the levels of cytosolic and mitochondrial Bcl-xL in the penumbra and core were markedly reduced, while the levels of cytosolic Bax in the core and mitochondrial Bax in the penumbra and core were enhanced significantly. There was a decrease in cytochrome C in mitochondria and an increase in cytochrome C in the cytosol of the penumbra and core. These changes were reversed by taurine. Furthermore, taurine inhibited the activation of calpain and caspase-3, reduced the degradation of αII-spectrin, and attenuated the necrotic and apoptotic cell death in the penumbra and core. These data demonstrated that preserving the mitochondrial function and blocking the mitochondria-mediated cell death pathway may be one mechanism of taurine’s action against brain ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ac-DEVD-AFC:

N-acetyl-Asp-Glu-Val-Asp-7-amino-4-trifluoromethylcoumarin

COX IV:

Cytochrome C oxidase subunit IV isoform

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethyleneglycol bis(2-aminoethyl ether)tetraacetic acid

HE staining:

Hematoxylin eosin staining

HEPES:

N-2-hydroxyethylpiperazine-N′-2′-ethanesulfonic acid

MCAo:

Middle cerebral artery occlusion

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TTC:

2,3,5-Triphenyltetrazolium chlorides

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling

NBT/BCIP:

Nitroblue tetrazolium/5-bromo-4-chloro-3-inoloyl-phosphate

References

  • Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ (1998) Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke 29:1037–1047

    PubMed  CAS  Google Scholar 

  • Benchoua A, Guegan C, Couriaud C, Hosseini H, Sampaio N, Morin D, Onteniente B (2001) Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 21:7127–7134

    PubMed  CAS  Google Scholar 

  • Bevers MB, Neumar RW (2008) Mechanistic role of calpains in postischemic neurodegeneration. J Cereb Blood Flow Metab 28:655–673

    Article  PubMed  CAS  Google Scholar 

  • Birdsall TC (1998) Therapeutic applications of taurine. Altern Med Rev 3:128–136

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cao G, Minami M, Pei W, Yan C, Chen D, O’Horo C, Graham SH, Chen J (2001) Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab 21:321–333

    Article  PubMed  CAS  Google Scholar 

  • Choi WS, Lee EH, Chung CW, Jung YK, Jin BK, Kim SU, Oh EH, Saido TC, Oh YJ (2001) Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: protective role of Bcl-2. J Neurochem 77:1531–1541

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A (2008) Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids 34:321–328

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Trenkner E (2004) Taurine as a modulator of excitatory and inhibitory neurotransmission. Neurochem Res 29:189–197

    Article  PubMed  CAS  Google Scholar 

  • Elibol B, Soylemezoglu F, Unal I, Fujii M, Hirt L, Huang PL, Moskowitz MA, Dalkara T (2001) Nitric oxide is involved in ischemia-induced apoptosis in brain: a study in neuronal nitric oxide synthase null mice. Neuroscience 105:79–86

    Article  PubMed  CAS  Google Scholar 

  • Ferrer I, Planas AM (2003) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 62:329–339

    PubMed  Google Scholar 

  • Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 274:2225–2233

    Article  PubMed  CAS  Google Scholar 

  • Foos TM, Wu JY (2002) The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 27:21–26

    Article  PubMed  CAS  Google Scholar 

  • Gao G, Dou QP (2000) N-terminal cleavage of bax by calpain generates a potent proapoptotic 18 kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochem 80:53–72

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg MD (1997) The new language of cerebral ischemia. AJNR Am J Neuroradiol 18:1435–1445

    PubMed  CAS  Google Scholar 

  • Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  • Graham SH, Chen J (2001) Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 21:99–109

    Article  PubMed  CAS  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–18911

    Article  PubMed  CAS  Google Scholar 

  • Harwood SM, Yaqoob MM, Allen DA (2005) Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem 42:415–431

    Article  PubMed  CAS  Google Scholar 

  • Huxtable RJ (1992) Physiological action of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Juin P, Pelletier M, Oliver L, Tremblais K, Gregoire M, Meflah K, Vallette FM (1998) Induction of a caspase-3-like activity by calcium in normal cytosolic extracts triggers nuclear apoptosis in a cell-free system. J Biol Chem 273:17559–17564

    Article  PubMed  CAS  Google Scholar 

  • Kilic E, Hermann DM, Kügler S, Kilic U, Holzmüller H, Schmeer C, Bähr M (2002) Adenovirus-mediated Bcl-XL expression using a neuron-specific synapsin-1 promoter protects against disseminated neuronal injury and brain infarction following focal cerebral ischemia in mice. Neurobiol Dis 11:275–284

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, He L, Lemasters JJ (2003) Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Commun 304:463–470

    Article  PubMed  CAS  Google Scholar 

  • Krajewski S, Mai JK, Krajewska M, Sikorska A, Mossakowski MJ, Reed JC (1995) Up-regulation of Bax protein levels following cerebral ischemia. J Neurosci 15:6364–6376

    PubMed  CAS  Google Scholar 

  • Lallemand F, De Witte P (2004) Taurine concentration in the brain and in the plasma following intraperitoneal injections. Amino Acids 26:111–116

    Article  PubMed  CAS  Google Scholar 

  • Leon R, Wu H, Jin Y, Wei J, Buddhala C, Prentice H, Wu JY (2009) Protective function of taurine in glutamate-induced apoptosis in cultured neurons. J Neurosci Res 87:1185–1194

    Article  PubMed  CAS  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  • Lo EH, Pierce AR, Matsumoto K, Kano T, Evans CJ, Newcomb R (1998) Alterations in K+ evoked profiles of neurotransmitter and neuromodulator amino acids after focal ischemia–reperfusion. Neuroscience 83:449–458

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic Press, New York

    Google Scholar 

  • Martin LJ (2010) Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals 3:839–915

    Article  PubMed  CAS  Google Scholar 

  • Matsushita K, Matsuyama T, Kitagawa K, Matsumoto M, Yanagihara T, Sugita M (1998) Alteration of Bcl-2 family proteins precede cytoskeletal proteolysis in the penumbra, but not in infarct centres following focal cerebral ischemia in mice. Neuroscience 83:439–448

    Article  PubMed  CAS  Google Scholar 

  • Michalk DV, Wingenfeld P, Licht C, Ugur T, Siar LF (1996) The mechanisms of taurine mediated protection against cell damage induced by hypoxia and reoxygenation. Adv Exp Med Biol 403:223–232

    PubMed  CAS  Google Scholar 

  • Moubarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA, Menissier-de Murcia J, Susin SA (2007) Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27:4844–4862

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150:887–894

    Article  PubMed  CAS  Google Scholar 

  • Nakka VP, Gusain A, Mehta SL, Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 37:7–38

    Article  PubMed  CAS  Google Scholar 

  • Nicotera P, Leist M, Ferrando-May E (1998) Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett 102–103:139–142

    Article  PubMed  Google Scholar 

  • Pasantes-Morales H, Arzate ME (1981) Effect of taurine on seizures induced by 4-aminopyridine. J Neurosci Res 6:465–474

    Article  PubMed  CAS  Google Scholar 

  • Saransaari P, Oja SS (2000) Taurine and neural cell damage. Amino Acids 19:509–526

    Article  PubMed  CAS  Google Scholar 

  • Schmid-Elsaesser R, Zausinger S, Hungerhuber E, Baethmann A, Reulen HJ (1998) A critical reevaluation of the intraluminal thread model of focal cerebral ischemia. Evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry. Stroke 29:2162–2170

    PubMed  CAS  Google Scholar 

  • Schuller-Levis GB, Park E (2004) Taurine and its chloramine: modulators of immunity. Neurochem Res 29:117–126

    Article  PubMed  CAS  Google Scholar 

  • Schwab BL, Guerini D, Didszun C, Bano D, Ferrando-May E, Fava E, Tam J, Xu D, Xanthoudakis S, Nicholson DW, Carafoli E, Nicotera P (2002) Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ 9:818–831

    Article  PubMed  CAS  Google Scholar 

  • Sims NR, Anderson MF (2002) Mitochondrial contributions to tissue damage in stroke. Neurochem Int 40:511–526

    Article  PubMed  CAS  Google Scholar 

  • Solaroglu I, Tsubokawa T, Cahill J, Zhang JH (2006) Anti-apoptotic effect of granulocyte-colony stimulating factor after focal cerebral ischemia in the rat. Neuroscience 143:965–974

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Xu C (2008) Neuroprotective mechanism of taurine due to up-regulating calpastatin and down-regulating calpain and caspase-3 during focal cerebral ischemia. Cell Mol Neurobiol 28:593–611

    Article  PubMed  Google Scholar 

  • Sun M, Zhao Y, Xu C (2008) Cross-talk between calpain and caspase-3 in penumbra and core during focal cerebral ischemia–reperfusion. Cell Mol Neurobiol 28:71–85

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Zhao Y, Gu Y, Xu C (2009) Inhibition of nNOS reduces ischemic cell death through down-regulating calpain and caspase-3 after experimental stroke. Neurochem Int 54:339–346

    Article  PubMed  CAS  Google Scholar 

  • Tamai I, Senmaru M, Terasaki T, Tsuji A (1995) Na+- and Cl--dependent transport of taurine at the blood–brain barrier. Biochem Pharmacol 50:1783–1793

    Article  PubMed  CAS  Google Scholar 

  • Taranukhin AG, Taranukhina EY, Saransaari P, Djatchkova IM, Pelto-Huikko M, Oja SS (2008) Taurine reduces caspase-8 and caspase-9 expression induced by ischemia in the mouse hypothalamic nuclei. Amino Acids 34:169–174

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto Y, Shimizu S (2000) Bcl-2 family: life-or-death switch. FEBS Lett 466:6–10

    Article  PubMed  CAS  Google Scholar 

  • Urquhart N, Perry TL, Hansen S, Kennedy J (1974) Passage of taurine into adult mammalian brain. J Neurochem 22:871–872

    Article  PubMed  CAS  Google Scholar 

  • Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–23

    Article  PubMed  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, M., Gu, Y., Zhao, Y. et al. Protective functions of taurine against experimental stroke through depressing mitochondria-mediated cell death in rats. Amino Acids 40, 1419–1429 (2011). https://doi.org/10.1007/s00726-010-0751-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0751-8

Keywords

Navigation