Skip to main content

Rotenone Decreases Ischemia-Induced Injury by Inhibiting Mitochondrial Permeability Transition: A Study in Brain

  • Protocol
  • First Online:
Mitochondria

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2497))

  • 1669 Accesses

Abstract

Mitochondria participate in many physiological and pathological processes in the cells, including cellular energy supply, regulation of calcium homeostasis, apoptosis, and ROS generation. Alterations of mitochondrial functions, especially the opening of mitochondrial permeability transition pore (mPTP) are the main mechanisms responsible for the ischemic brain damage. Recently, the inhibitors of the Complex I of mitochondrial respiratory chain emerged as promising suppressors of mitochondrial ROS generation and mPTP opening. Here we describe the assay that can be implemented easily to evaluate the protective effects of rotenone or other potential inhibitors of the Complex I of mitochondrial respiratory chain against acute ischemia-induced injuries in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matsumoto S, Friberg H, Ferrand-Drake M, Wieloch T (1999) Blockade of the mitochondrial permeability transition pore diminishes infarct size in the rat after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 19(7):736–741. https://doi.org/10.1097/00004647-199907000-00002

    Article  CAS  Google Scholar 

  2. Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102(34):12005–12010. https://doi.org/10.1073/pnas.0505294102

    Article  CAS  Google Scholar 

  3. Griffiths EJ, Halestrap AP (1993) Protection by Cyclosporin a of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25(12):1461–1469. https://doi.org/10.1006/jmcc.1993.1162

    Article  CAS  Google Scholar 

  4. Eliseev RA, Filippov G, Velos J, VanWinkle B, Goldman A, Rosier RN, Gunter TE (2007) Role of cyclophilin D in the resistance of brain mitochondria to the permeability transition. Neurobiol Aging 28(10):1532–1542. https://doi.org/10.1016/j.neurobiolaging.2006.06.022

    Article  CAS  Google Scholar 

  5. Tsuji A, Tamai I, Sakata A, Tenda Y, Terasaki T (1993) Restricted transport of cyclosporin a across the blood-brain barrier by a multidrug transporter, P-glycoprotein. Biochem Pharmacol 46(6):1096–1099. https://doi.org/10.1016/0006-2952(93)90677-o

    Article  CAS  Google Scholar 

  6. Brustovetsky N, Dubinsky JM (2000) Limitations of cyclosporin a inhibition of the permeability transition in CNS mitochondria. J Neurosci Off J Soc Neurosci 20(22):8229–8237. https://doi.org/10.1523/jneurosci.20-22-08229.2000

    Article  CAS  Google Scholar 

  7. Gijtenbeek JM, van den Bent MJ, Vecht CJ (1999) Cyclosporine neurotoxicity: a review. J Neurol 246(5):339–346. https://doi.org/10.1007/s004150050360

    Article  CAS  Google Scholar 

  8. Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT (2007) Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem 100(6):1469–1479. https://doi.org/10.1111/j.1471-4159.2006.04333.x

    Article  CAS  Google Scholar 

  9. Barreto-Torres G, Parodi-Rullán R, Javadov S (2012) The role of PPARα in metformin-induced attenuation of mitochondrial dysfunction in acute cardiac ischemia/reperfusion in rats. Int J Mol Sci 13(6):7694–7709. https://doi.org/10.3390/ijms13067694

    Article  CAS  Google Scholar 

  10. Chen Q, Lesnefsky EJ (2011) Blockade of electron transport during ischemia preserves bcl-2 and inhibits opening of the mitochondrial permeability transition pore. FEBS Lett 585(6):921–926. https://doi.org/10.1016/j.febslet.2011.02.029

    Article  CAS  Google Scholar 

  11. Skemiene K, Rekuviene E, Jekabsone A, Cizas P, Morkuniene R, Borutaite V (2020) Comparison of effects of metformin, phenformin, and inhibitors of mitochondrial complex I on mitochondrial permeability transition and ischemic brain injury. Biomolecules 10(10):1400. https://doi.org/10.3390/biom10101400

    Article  CAS  Google Scholar 

  12. Rekuviene E, Ivanoviene L, Borutaite V, Morkuniene R (2017) Rotenone decreases ischemia-induced injury by inhibiting mitochondrial permeability transition in mature brains. Neurosci Lett 653:45–50. https://doi.org/10.1016/j.neulet.2017.05.028

    Article  CAS  Google Scholar 

  13. Rekuviene E, Ivanoviene L, Borutaite V, Morkuniene R (2017) Data on effects of rotenone on calcium retention capacity, respiration and activities of respiratory chain complexes I and II in isolated rat brain mitochondria. Data Brief 13:707–712. https://doi.org/10.1016/j.dib.2017.06.052

    Article  Google Scholar 

  14. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    Article  CAS  Google Scholar 

  15. Holtzman JL (1976) Calibration of the oxygen polarograph by the depletion of oxygen with hypoxanthine-xanthine oxidase-catalase. Anal Chem 48(1):229–230. https://doi.org/10.1021/ac60365a048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramune Morkuniene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Morkuniene, R., Rekuviene, E., Kopustinskiene, D.M. (2022). Rotenone Decreases Ischemia-Induced Injury by Inhibiting Mitochondrial Permeability Transition: A Study in Brain. In: Tomar, N. (eds) Mitochondria. Methods in Molecular Biology, vol 2497. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2309-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2309-1_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2308-4

  • Online ISBN: 978-1-0716-2309-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics