Skip to main content
Log in

Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water coordination on the structure and properties of l-histidine and zwitterionic l-histidine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of l-histidine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water on structures of His·M(H2O)m, m = 0.1 complexes have been determined theoretically employing density functional theories using extended basis sets. Of the five stable complexes investigated the relative stability of the gas-phase complexes computed with DFT methods (with one exception of K+ systems) suggest metallic complexes of the neutral l-histidine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of l-histidine in the presence of the metal cations Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+ were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to l-histidine is exhibited by the Cu2+ cation. The computed Gibbs energies ΔG are negative, span a rather broad energy interval (from −130 to −1,300 kJ/mol), and upon hydration are appreciably lowered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alcamí M, González AI, Mó O, Yánez M (1999) Performance of density functional theory methods for the treatment of metal-ligand dications. Chem Phys Lett 307:244–252. doi:10.1016/S0009-2614(99)00513-8

    Article  Google Scholar 

  • Baerends EJ (2000) Perspective on “self-consistent equations including exchange and correlation effects”. Theor Chem Acc 103:265–269. doi:10.1007/s002140050031

    CAS  Google Scholar 

  • Becke AD (1993a) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  • Becke AD (1993b) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98:1372–1377. doi:10.1063/1.464304

    Article  CAS  Google Scholar 

  • Besant PG, Attwood PV (2005) Mammalian histidine kinases. Biochim Biophys Acta 1754:281–290. doi:10.1016/j.bbapap.2005.07.026

    CAS  PubMed  Google Scholar 

  • Bickelhaupt FM, Baerends EJ (2000) Kohn-Sham density functional theory: predicting and understanding chemistry. In: Lipkowitz KB, Boyd DB (eds) Rev Comput Chem, vol 15. Wiley-VCH, New York, pp 1–86

  • Cerda BA, Wesdemiotis Ch (2000) Zwitterionic vs. charge-solvated structures in the binding of arginine to alkali metal ions in the gas phase. Analyst 125:657–660. doi:10.1039/a909220j

    Article  CAS  Google Scholar 

  • Dunbar RC, Hopkinson AC, Oomens J, Siu ChK, Siu KWM, Steill JD, Verkerk UH, Zhao J (2009) Conformation switching in gas-phase complexes of histidine with alkaline earth ions. J Phys Chem B 113:10403–10408. doi:10.1021/jp903064w

    Article  CAS  PubMed  Google Scholar 

  • El Khoury Y, Hellwig P (2009) Infrared spectroscopic characterization of copper–polyhistidine from 1, 800 to 50 cm−1: model systems for copper coordination. J Biol Inorg Chem 14:23–34. doi:10.1007/s00775-008-0421-4

    Article  CAS  PubMed  Google Scholar 

  • Fei WX, Rai AK, Lu ZW, Lin ZJ (2009) Structural stabilities of metalated histidines in gas phase and existence of gaseous zwitterionic histidine conformers. J Mol Struct Theochem 895:65–71. doi:10.1016/j.theochem.2008.10.017

    Article  CAS  Google Scholar 

  • Fitz D, Jakschitz T, Rode BM (2008) The catalytic effect of l- and d-histidine on alanine and lysine peptide formation. J Inorg Biochem 102:2097–2102. doi:10.1016/j.jinorgbio.2008.07.010

    Article  CAS  PubMed  Google Scholar 

  • Fraústo da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. Claredon Press, Oxford

    Google Scholar 

  • Frisch MJ et al (2003) Gaussian 03, Revision B.04. Gaussian Inc., Pittsburgh

    Google Scholar 

  • Gapaev A, Dunbar RC (2003) Na+ affinities of gas-phase amino acids by ligand exchange equilibrium. Int J Mass Spectrom 228:825–839. doi:10.1016/S1387-3806(03)00242-2

    Article  Google Scholar 

  • Harvey KB, Porter GB (1963) Introduction to physical inorganic chemistry. Addison Wesley Publ. Comp. Inc., London

    Google Scholar 

  • Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  • Hoyau S, Norrman K, McMahon TB, Ohanessian GA (1999) Quantitative basis for a scale of Na+ affinities of organic and small biological molecules in the gas phase. J Am Chem Soc 121:8864–8875. doi:10.1021/ja9841198

    Article  CAS  Google Scholar 

  • Huang Z, Yu W, Lin Z (2006) First-principle studies of gaseous aromatic amino acid histidine. J Mol Struct Theochem 801:7–20. doi:10.1016/j.theochem.2006.08.053

    Article  CAS  Google Scholar 

  • Jockusch RA, Price WD, Williams ER (1999) Structure of cationized arginine (Arg·M+, M = H, Li, Na, K, Rb, and Cs) in the gas phase: further evidence for zwitterionic arginine. J Phys Chem A 103:9266–9274. doi:10.1021/jp9931307

    Article  CAS  PubMed  Google Scholar 

  • Jockusch RA, Lemoff AS, Williams ER (2001) Hydration of valine-cation complexes in the gas phase: on the number of water molecules necessary to form a zwitterion. J Phys Chem A 105:10929–10942. doi:10.1021/jp013327a

    Article  CAS  Google Scholar 

  • Johnson BG, Gill PMW, Pople JA (1993) The performance of a family of density functional methods. J Chem Phys 98:5612–5626. doi:10.1063/1.464906

    Article  CAS  Google Scholar 

  • Jones ChM, Bernier M, Carson E, Colyer KE, Metz R, Pawlow A, Wischow ED, Webb I, Andriole EJ, Poutsma JC (2007) Gas-phase acidities of the 20 protein amino acids. Int J Mass Spectrom 267:54–62. doi:10.1016/j.ijms.2007.02.018

    Article  CAS  Google Scholar 

  • Kapp J, Remko M, PvR Schleyer (1996) HXO and (CH)XO compounds (X = C, Si, Ge, Sn, Pb): Double bonds vs carbene-like structures—can the metal compounds exist at all? J Am Chem Soc 118:5745–5751. doi:0.1021/ja953846p

    Article  CAS  Google Scholar 

  • Kish MM, Ohanessian G, Wesdemiotis C (2003) The Na+ affinities of α-amino acids: side-chain substituent effects. Int J Mass Spectrom 227:509–524. doi:10.1016/S1387-3806(03)00082-4

    Article  CAS  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. doi:10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  • Kovačević B, Rožman M, Klasinć L, Srzić D, Maksić ZB, Yánez M (2005) Gas-phase structure of protonated histidine and histidine methyl ester: combined experimental mass spectrometry and theoretical ab initio study. J Phys Chem A 109:8329–8335. doi:10.1021/jp053288t

    Article  PubMed  Google Scholar 

  • Lavanant H, Hecquet E, Hoppilliard Y (1999) Complexes of l-histidine with Fe2+, Co2+, Ni2+, Cu2+, Zn2+ studied by electrospray ionization mass spectrometry. Int J Mass Spectrom 185/186/187:11–23. doi:10.1016/S1387-3806(98)14044-7

  • Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  • Li F, Fitz D, Fraser DG, Rode BM (2009) Catalytic effects of histidine enantiomers and glycine on the formation of dileucine and dimethionine in the salt-induced peptide formation reaction. Amino Acids. doi:10.1007/s00726-009-0249-4

  • Madden JJ, McGandy EL, Seeman NC (1972) The crystal structure of the orthorhombic form of L-(+)-histidine. Acta Cryst B28:2377–2382. doi:10.1107/S0907444907043417

    Google Scholar 

  • Marino T, Russo N, Toscano M (2000) Gas-phase metal ion (Li+, Na+, Cu+) affinities of glycine and alanine. J Inorg Biochem 79:179–185. doi:10.1016/S0162-0134(99)00242-1

    Article  CAS  PubMed  Google Scholar 

  • Norberg J, Foloppe N, Lennart N (2005) Intrinsic relative stabilities of the neutral tautomers of arginine side-chain models. J Chem Theory Comput 1:986. doi:10.1021/ct049849m

    Article  CAS  Google Scholar 

  • O’Hair RJ, Bowie JH, Gronert S (1992) Gas phase acidities of the α amino acids. Int J Mass Spectrom Ion Process 117:23–36. doi:10.1016/0168-1176(92)80083-D

    Article  Google Scholar 

  • Oakley F, Horn NM, Thomas AL (2004) Histidine-stimulated divalent metal uptake in human erythrocytes and in the erythroleukaemic cell line HEL.92.1.7. J Physiol 561:525–534. doi:10.1007/BF00675792

    Article  CAS  PubMed  Google Scholar 

  • Oliphant N, Bartlett RJ (1994) A systematic comparison of molecular properties obtained using Hartree–Fock, a hybrid Hartree–Fock density-functional-theory, and coupled-cluster methods. J Chem Phys 100:6550–6561. doi:10.1063/1.467064

    Article  CAS  Google Scholar 

  • Plankensteiner K, Reiner H, Rode BM (2005) Stereoselective differentiation in the salt-induced peptide formation reaction and its relevance for the origin of life. Peptides 26:535–541. doi:10.1016/j.peptides.2004.11.019

    Article  CAS  PubMed  Google Scholar 

  • Poater J, Sola M, Rimola A, Rodriguez-Santiago L, Sodupe M (2004) Ground and low-lying states of Cu2+-H2O. A difficult case for density functional. J Phys Chem A 108:6072. doi:10.1021/jp0487657

    Article  CAS  Google Scholar 

  • Rai AK, Fei WX, Lu ZW, Lin ZJ (2009) Effects of microsolvation and aqueous solvation on the tautomers of histidine: a computational study on energy, structure and IR spectrum. Theor Chem Acc 124:37–47. doi:10.1007/s00214-009-0577-1

    Article  CAS  Google Scholar 

  • Rebek J (1990) On the structure of histidine and its role in enzyme active sites. Struct Chem 1:129–131. doi:10.1007/BF00675792

    Article  CAS  Google Scholar 

  • Remko M (1997) Structure and gas phase stability of complexes L…M, where M = Li+, Na+, Mg2+ and L is formaldehyde, formic acid, formate anion, formamide and their sila derivatives. Mol Phys 91:929–936. doi:10.1080/002689797171049

    CAS  Google Scholar 

  • Remko M, Rode BM (2000a) Bivalent cation binding effect on formation of the peptide bond. Chem Phys Lett 316:489–494. doi:10.1016/S0009-2614(99)01322-6

    Article  CAS  Google Scholar 

  • Remko M, Rode BM (2000b) Thermodynamics of binding of Li+, Na+, Mg2+ and Zn2+ to Lewis bases in the gas phase. J Mol Struct Theochem 505:269–281. doi:10.1016/S0166-1280(99)00381-4

    Article  CAS  Google Scholar 

  • Remko M, Rode BM (2001) Catalyzed peptide bond formation in the gas phase. Phys Chem Chem Phys 3:4667–4673. doi:10.1039/b105623a

    Article  CAS  Google Scholar 

  • Remko M, Rode BM (2004) Catalyzed peptide bond formation in the gas phase. Role of bivalent cations and water in formation of 2-aminoacetamide from ammonia and glycine and in dimerization of glycine. Struct Chem 15:223–232. doi:10.1023/B:STUC.0000021531.69736.00

    Article  CAS  Google Scholar 

  • Remko M, Rode BM (2006) Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine. J Phys Chem A 110:1960–1967. doi:0.1021/jp054119b

    Article  CAS  PubMed  Google Scholar 

  • Remko M, von der Lieth C-W (2006) Gas-phase and solution conformations of selected dimeric structural units of heparin. J Chem Inf Model 46:1687–1694. doi:10.1021/ci060060+

    Article  CAS  PubMed  Google Scholar 

  • Remko M, Fitz D, Rode BM (2008) Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure and properties of l-arginine and zwitterionic l-arginine. J Phys Chem A 112:7652–7661. doi:10.1021/jp801418h

    Article  CAS  PubMed  Google Scholar 

  • Rimola A, Rodríguez-Santiago L, Sodupe M (2006) Cation-π interactions and oxidative effects on Cu+ and Cu2+ binding to Phe, Tyr, Trp, and His amino acids in the gas phase. Insights from first-principles calculation. J Phys Chem B 110:24189–24199. doi:10.1021/jp064957l

    Article  CAS  PubMed  Google Scholar 

  • Rimola A, Rodriguez-Santiago L, Ugliengo P, Sodupe M (2007) Is the peptide bond formation activated by Cu2+ Interactions? Insights from density functional calculations. J Phys Chem B 111:5740–5747. doi:10.1021/jp071071o

    Article  CAS  PubMed  Google Scholar 

  • Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786. doi:10.1016/S0196-9781(99)00062-5

    Article  CAS  PubMed  Google Scholar 

  • Rode BM, Bujdák J, Eder AH (1993) The role of inorganic substances in the chemical evolution of peptides on earth. Trends Inorg Chem 3:45–62

    Google Scholar 

  • Ryzhov V, Dunbar RC, Cerda B, Wesdemiotis Ch (2000) Cation-π effects in the complexation of Na+ and K+ with Phe, Tyr, and Trp in the gas phase. J Am Soc Mass Spectrom 11:1037. doi:10.1016/S1044-0305(00)00181-1

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Iwasaki H, Katano T, Nakahashi Y (1978) Bis(L-histidinato)nickel(II) monohydrate. Acta Cryst B34:660–662. doi:10.1107/S0567740878003738

    CAS  Google Scholar 

  • Shriver DF, Atkins PW, Langford CH (1996) Inorganic chemistry, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Siegel H, Martin RB (1982) Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem Rev 82:385–426. doi:10.1021/cr00050a003

    Article  Google Scholar 

  • Sousa SF, Fernandes PA, Ramos MJ (2007a) Comparative assessment of theoretical methods for the determination of geometrical properties in biological zinc complexes. J Phys Chem B 111:9146–9152. doi:10.1021/jp072538y

    Article  CAS  PubMed  Google Scholar 

  • Sousa SF, Fernandes PA, Ramos MJ (2007b) General performance of density functionals. J Phys Chem A 111:10439. doi:10.1021/jp0734474

  • Tavasoli E, Fattahi A (2009a) DFT study of bond energies and attachment sites of sample divalent cations (Mg2+, Ca2+, Zn2+) to histidine in the gas phase. J Theor Comput Chem 8:347–371

    Article  CAS  Google Scholar 

  • Tavasoli E, Fattahi A (2009b) DFT study on gas-phase interaction between histidine and alkali metal ions (Li+, Na+, K+); and influence of these ions on histidine acidity. J Theor Comput Chem 8:475–490

    Article  CAS  Google Scholar 

  • Voet D, Voet JG (1995) Biochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Wang P, Ohanessian G, Wesdemiotis Ch (2008) The sodium ion affinities of sparagines, glutamine, histidine and arginine. Int J Mass Spectrom 269:34–45. doi:10.1016/j.ijms.2007.09.008

    Article  CAS  Google Scholar 

  • Wincel H (2007a) Hydration of potassiated amino acids in the gas phase. J Am Soc Mass Spectrom 18:2083–2089. doi:10.1016/j.jasms.2007.09.006

    Article  CAS  PubMed  Google Scholar 

  • Wincel H (2007b) Hydration energies of sodiated amino acids from gas-phase equilibria determinations. J Phys Chem A 111:5784–5791. doi:10.1021/jp0721595

    Article  CAS  PubMed  Google Scholar 

  • Zhang MQ, Leurs R, Timmerman H (1997) Histamine H1-receptor antagonists. In: Wolff ME (ed) Burger’s medicinal chemistry and drug discovery, 5 edn, vol 5: Therapeutic agents. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The authors thank the Austrian Federal Ministry for Science and Research, the Austrian Science Foundation (FWF), and the Slovak Ministry of Education (Grant No. 1/0084/10) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Remko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remko, M., Fitz, D. & Rode, B.M. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water coordination on the structure and properties of l-histidine and zwitterionic l-histidine. Amino Acids 39, 1309–1319 (2010). https://doi.org/10.1007/s00726-010-0573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0573-8

Keywords

Navigation