Skip to main content

Advertisement

Log in

Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Here we summarized what is known at the present about function, structure and effect of mutations in the human prolidase. Among the peptidases, prolidase is the only metalloenzyme that cleaves the iminodipeptides containing a proline or hydroxyproline residue at the C-terminal end. It is relevant in the latest stage of protein catabolism, particularly of those molecules rich in imino acids such as collagens, thus being involved in matrix remodelling. Beside its intracellular functions, prolidase has an antitoxic effect against some organophosphorus molecules, can be used in dietary industry as bitterness reducing agent and recently has been used as target enzyme for specific melanoma prodrug activation. Recombinant human prolidase was produced in prokaryotic and eukaryotic hosts with biochemical properties similar to the endogenous enzyme and represents a valid tool both to better understand the structure and biological function of the enzyme and to develop an enzyme replacement therapy for the prolidase deficiency (PD). Prolidase deficiency is a rare recessive disorder caused by mutations in the prolidase gene and characterized by severe skin lesions. Single amino acid substitutions, exon splicing, deletions and a duplication were described as causative for the disease and are mainly located at highly conserved amino acids in the sequence of prolidase from different species. The pathophysiology of PD is still poorly understood; we offer here a review of the molecular mechanisms so far hypothesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbott C, Yu DM, Woollatt E et al (2000) Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. Eur J Biochem 267:6140–6150

    PubMed  CAS  Google Scholar 

  • Arata J, Hatakenaka K, Oono T (1986) Effect of topical application of glycine and proline on recalcitrant leg ulcers of prolidase deficiency. Arch Dermatol 122:626–627

    PubMed  CAS  Google Scholar 

  • Berardesca E, Fideli D, Bellosta M et al (1992) Blood transfusions in the therapy of a case of prolidase deficiency. Br J Dermatol 126:193–195

    PubMed  CAS  Google Scholar 

  • Bissonnette R, Friedmann D, Giroux JM et al (1993) Prolidase deficiency: a multisystemic hereditary disorder. J Am Acad Dermatol 29:818–821

    PubMed  CAS  Google Scholar 

  • Blau N, Niederwieser A, Shmerling DH (1988) Peptiduria presumably caused by aminopeptidase-P deficiency. A new inborn error of metabolism. J Inherit Metab Dis 11(Suppl 2):240–242

    PubMed  Google Scholar 

  • Bockelmann W (1995) The proteolytic system of sterter and non-starter bacteria: components and their importance for cheese ripening. Int Dairy J 5:977–994

    CAS  Google Scholar 

  • Boright AP, Scriver CR, Lancaster GA et al (1989) Prolidase deficiency: biochemical classification of alleles. Am J Hum Genet 44:731–740

    PubMed  CAS  Google Scholar 

  • Buckel P (1996) Recombinant proteins for therapy. Trends Pharmacol Sci 17:450–456

    PubMed  CAS  Google Scholar 

  • Busek P, Malík R, Sedo A (2003) Dipeptidyl peptidase-IV activity and/or structure homologues (DASH) and their substrates in cancer. Intl J Biochem Cell Biol 36:408–421

    Google Scholar 

  • Butterworth J, Priestman DA (1985) Presence in human cells and tissues of two prolidases and their alteration in prolidase deficiency. J Inherit Metab Dis 8:193–197

    PubMed  CAS  Google Scholar 

  • Cheng TC, Harvey SP, Chen GL (1996) Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Appl Environ Microbiol 62:1636–1641

    PubMed  CAS  Google Scholar 

  • Cohen MH, Williams G, Johnson JR et al (2002) Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia. Clin Cancer Res 8:935–942

    PubMed  CAS  Google Scholar 

  • Copik AJ, Swierczek SI, Lowther WT et al (2003) Kinetic and spectroscopic characterization of the H178A methionyl aminopeptidase from Escherichia coli. Biochemistry 42:6283–6292

    PubMed  CAS  Google Scholar 

  • Cottrell GS, Hooper NM, Turner AJ (2000) Cloning, expression, and characterization of human cytosolic aminopeptidase P: a single manganese(II)-dependent enzyme. Biochemistry 39:15121–15128

    PubMed  CAS  Google Scholar 

  • Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377

    PubMed  CAS  Google Scholar 

  • Di Rocco M, Fantasia AR, Taro M et al (2007) Systemic lupus erythematosus-like disease in a 6-year-old boy with prolidase deficiency. J Inherit Metab Dis 30:814

    PubMed  CAS  Google Scholar 

  • Druker BJ (2002) STI571 (Gleevec) as a paradigm for cancer therapy. Trends Mol Med 8(Suppl 4):S14–18

    PubMed  CAS  Google Scholar 

  • Du X, Tove S, Kast-Hutcheson K et al (2005) Characterization of the dinuclear metal center of Pyrococcus furiosus prolidase by analysis of targeted mutants. FEBS Lett 579:6140–6146

    PubMed  CAS  Google Scholar 

  • Dyne K, Zanaboni G, Bertazzoni M et al (2001) Mild, late-onset prolidase deficiency: another Italian case. Br J Dermatol 144:635–636

    PubMed  CAS  Google Scholar 

  • Emmerson KS, Phang JM (1993) Hydrolysis of proline dipeptides completely fulfills the proline requirement in a proline-auxotrophic Chinese hamster ovary cell line. J Nutr 123:909–914

    PubMed  CAS  Google Scholar 

  • Endo F, Matsuda I, Ogata A et al (1982) Human erythrocyte prolidase and prolidase deficiency. Pediatr Res 16:227–231

    PubMed  CAS  Google Scholar 

  • Endo F, Motohara K, Indo Y et al (1987) Immunochemical studies of human prolidase with monoclonal and polyclonal antibodies: absence of the subunit of prolidase in erythrocytes from a patient with prolidase deficiency. Pediatr Res 22:627–633

    PubMed  CAS  Google Scholar 

  • Endo F, Tanoue A, Nakai H et al (1989) Primary structure and gene localization of human prolidase. J Biol Chem 264:4476–4481

    PubMed  CAS  Google Scholar 

  • Endo F, Tanoue A, Ogata T et al (1988) Immunoaffinity purification of human erythrocyte prolidase. Clin Chim Acta 176:143–149

    PubMed  CAS  Google Scholar 

  • Flentke GR, Munoz E, Huber BT et al (1991) Inhibition of dipeptidyl aminopeptidase IV (DP-IV) by Xaa-boroPro dipeptides and use of these inhibitors to examine the role of DP-IV in T-cell function. Proc Natl Acad Sci U S A 88:1556–1559

    PubMed  CAS  Google Scholar 

  • Forlino A, Lupi A, Vaghi P et al (2002) Mutation analysis of five new patients affected by prolidase deficiency: the lack of enzyme activity causes necrosis-like cell death in cultured fibroblasts. Hum Genet 111:314–322

    PubMed  CAS  Google Scholar 

  • Fülöp V, Böcskei Z, Polgár L (1998) Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis. Cell 94:161–170

    PubMed  Google Scholar 

  • Ghosh M, Grunden AM, Dunn DM et al (1998) Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 180:4781–4789

    PubMed  CAS  Google Scholar 

  • Giustizieri ML, Albanesi C, Scarponi C et al (2002) Nitric oxide donors suppress chemokine production by keratinocytes in vitro and in vivo. Am J Pathol 161:1409–1418

    PubMed  CAS  Google Scholar 

  • Graham SC, Lilley PE, Lee M et al (2006) Kinetic and crystallographic analysis of mutant Escherichia coli aminopeptidase P: insights into substrate recognition and the mechanism of catalysis. Biochemistry 45:964–975

    PubMed  CAS  Google Scholar 

  • Hechtman P (2001) Prolidase deficiency. In: Scriver CR, Beaudet AL, Sly D, Valle W (eds) The metabolic and molecular basis of inherited disease. McGraw Hill, New York

    Google Scholar 

  • Hechtman P, Richter A, Corman N et al (1988) In situ activation of human erythrocyte prolidase: potential for enzyme replacement therapy in prolidase deficiency. Pediatr Res 24:709–712

    PubMed  CAS  Google Scholar 

  • Hedeager-Sørensen S, Kenny AJ (1985) Proteins of the kidney microvillar membrane. Purification and properties of carboxypeptidase P from pig kidneys. Biochem J 229:251–257

    PubMed  Google Scholar 

  • Hershkovitz T, Hassoun G, Indelman M et al (2006) A homozygous missense mutation in PEPD encoding peptidase D causes prolidase deficiency associated with hyper-IgE syndrome. Clin Exp Dermatol 31:435–440

    PubMed  CAS  Google Scholar 

  • House C, Baldwin GS, Kemp BE (1984) Synthetic peptide substrates for the membrane tyrosine protein kinase stimulated by epidermal growth factor. Eur J Biochem 140:363–367

    PubMed  CAS  Google Scholar 

  • Hui KS, Lajtha A (1980) Activation and inhibition of cerebral prolidase. J Neurochem 35:489–494

    PubMed  CAS  Google Scholar 

  • Hvizdos KM, Markham A (1999) Orlistat: a review of its use in the management of obesity. Drugs 58:743–760

    PubMed  CAS  Google Scholar 

  • Jemec GB, Moe AT (1996) Topical treatment of skin ulcers in prolidase deficiency. Pediatr Dermatol 13:58–60

    PubMed  CAS  Google Scholar 

  • Kikuchi S, Tanoue A, Endo F et al (2000) A novel nonsense mutation of the PEPD gene in a Japanese patient with prolidase deficiency. J Hum Genet 45:102–104

    PubMed  CAS  Google Scholar 

  • Koshland DE (1993) Molecule of the year. Science 262:1953

    PubMed  Google Scholar 

  • Kurien BT, Patel NC, Porter AC et al (2006) Prolidase deficiency and the biochemical assays used in its diagnosis. Anal Biochem 349:165–175

    PubMed  CAS  Google Scholar 

  • Laitinen O (1975) Clinical applications of urinary hydroxyproline determination. Acta Med Scand Suppl 577:1–57

    PubMed  CAS  Google Scholar 

  • Lapiere CM, Nusgens B (1969) Torpid skin wounds and collagen metabolism disorder. Arch Belg Dermatol Syphiligr 25:353–356

    PubMed  CAS  Google Scholar 

  • Ledoux P, Scriver C, Hechtman P (1994) Four novel PEPD alleles causing prolidase deficiency. Am J Hum Genet 54:1014–1021

    PubMed  CAS  Google Scholar 

  • Ledoux P, Scriver CR, Hechtman P (1996) Expression and molecular analysis of mutations in prolidase deficiency. Am J Hum Genet 59:1035–1039

    PubMed  CAS  Google Scholar 

  • Liu G, Nakayama K, Sagara Y et al (2005) Characterization of prolidase activity in erythrocytes from a patient with prolidase deficiency: comparison with prolidase I and II purified from normal human erythrocytes. Clin Biochem 38:625–631

    PubMed  CAS  Google Scholar 

  • Lowther WT, Matthews BW (2002) Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 102:4581–4608

    PubMed  CAS  Google Scholar 

  • Lupi A, Casado B, Soli M et al (2002) Therapeutic apheresis exchange in two patients with prolidase deficiency. Br J Dermatol 147:1237–1240

    PubMed  CAS  Google Scholar 

  • Lupi A, De Riso A, Della Torre S et al (2004) Characterization of a new PEPD allele causing prolidase deficiency in two unrelated patients: natural-occurrent mutations as a tool to investigate structure-function relationship. J Hum Genet 49:500–506

    PubMed  CAS  Google Scholar 

  • Lupi A, Della Torre S, Campari E et al (2006a) Human recombinant prolidase from eukaryotic and prokaryotic sources. Expression, purification, characterization and long-term stability studies. FEBS J 273:5466–5478

    PubMed  CAS  Google Scholar 

  • Lupi A, Rossi A, Campari E et al (2006b) Molecular characterization of six prolidase deficiency patients: identification of the first PEPD small duplication and of a mutation generating symptomatic and asymptomatic outcome within the same family. J Med Genet 43:e58

    PubMed  CAS  Google Scholar 

  • Maes M, Lambeir A, Gilany K et al (2005) Kinetic investigation of human dipeptidyl peptidase II (DPPII)-mediated hydrolysis of dipeptide derivatives and its identification as quiescent cell proline dipeptidase (QPP)/dipeptidyl peptidase 7 (DPP7). Biochem J 386:315–324

    PubMed  CAS  Google Scholar 

  • Maes M, Martinet W, Schrijvers D et al (2006) Dipeptidyl peptidase II and leukocyte cell death. Biochem Pharmacol 72:70–79

    PubMed  CAS  Google Scholar 

  • Maes M, Scharpé S, De Meester I (2007) Dipeptidyl peptidase II (DPPII), a review. Clin Chim Acta 380:31–49

    PubMed  CAS  Google Scholar 

  • Maher MJ, Ghosh M, Grunden AM et al (2004) Structure of the prolidase from Pyrococcus furiosus. Biochemistry 43:2771–2783

    PubMed  CAS  Google Scholar 

  • Marcinkiewicz J, Chain BM (1993) Differential regulation of cytokine production by nitric oxide. Immunology 80:146–150

    PubMed  CAS  Google Scholar 

  • Marcinkiewicz J (1997) Regulation of cytokine production by eicosanoids and nitric oxide. Arch Immunol Ther Exp 45:163–167

    CAS  Google Scholar 

  • Marcinkiewicz J, Grabowska A, Chain BM (1996) Is there a role for nitric oxide in regulation of T cell secretion of IL-2? J Immunol 156:4617–4621

    PubMed  CAS  Google Scholar 

  • Marguet D, Baggio L, Kobayashi T et al (2000) Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Natl Acad Sci U S A 97:6874–6879

    PubMed  CAS  Google Scholar 

  • Matsushima M, Takahashi T, Ichinose M et al (1991) Structural and immunological evidence for the identity of prolyl aminopeptidase with leucyl aminopeptidase. Biochem Biophys Res Commun 178:1459–1464

    PubMed  CAS  Google Scholar 

  • McDonald JK, Ohkubo I (2004) Dipeptidyl-peptidase II. In: Barrett AJ RN, Woessner JF (eds) Handbook of proteolytic enzymes. Elsevier, London

    Google Scholar 

  • Mittal S, Song X, Vig BS et al (2007a) Proline prodrug of melphalan targeted to prolidase, a prodrug activating enzyme overexpressed in melanoma. Pharm Res 24:1290–1298

    PubMed  CAS  Google Scholar 

  • Mittal S, Song X, Vig BS et al (2005) Prolidase, a potential enzyme target for melanoma: design of proline-containing dipeptide-like prodrugs. Mol Pharm 2:37–46

    PubMed  CAS  Google Scholar 

  • Mittal S, Tsume Y, Landowski CP et al (2007b) Proline prodrug of melphalan, prophalan-L, demonstrates high therapeutic index in a murine melanoma model. Eur J Pharm Biopharm 67:752–758

    PubMed  CAS  Google Scholar 

  • Miwa M, Ura M, Nishida M et al (1998) Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer 34:1274–1281

    PubMed  CAS  Google Scholar 

  • Monafo V, Marseglia GL, Maghnie M et al (2000) Transient beneficial effect of GH replacement therapy and topical GH application on skin ulcers in a boy with prolidase deficiency. Pediatr Dermatol 17:227–230

    PubMed  CAS  Google Scholar 

  • Morel et al (2007) Abstract presented at the 43rd annual symposium SSIEM, Hamburg, 4–7 September 2007

  • Myara I, Cosson C, Moatti N et al (1994) Human kidney prolidase-purification, preincubation properties and immunological reactivity. Int J Biochem 26:207–214

    PubMed  CAS  Google Scholar 

  • Nakayama K, Awata S, Zhang J et al (2003) Characteristics of prolidase from the erythrocytes of normal humans and patients with prolidase deficiency and their mother. Clin Chem Lab Med 41:1323–1328

    PubMed  CAS  Google Scholar 

  • Ogata A, Tanaka S, Tomoda T et al (1981) Autosomal recessive prolidase deficiency. Three patients with recalcitrant ulcers. Arch Dermatol 117:689–697

    PubMed  CAS  Google Scholar 

  • Olsen C, Wagtmann N (2002) Identification and characterization of human DPP9, a novel homologue of dipeptidyl peptidase IV. Gene 299:185–193

    PubMed  CAS  Google Scholar 

  • Oono T, Yasutomi H, Ohhashi T et al (1990) Characterization of fibroblast-derived prolidase. The presence of two forms of prolidase. J Dermatol Sci 1:319–323

    PubMed  CAS  Google Scholar 

  • Perugini P, Hassan K, Genta I et al (2005) Intracellular delivery of liposome-encapsulated prolidase in cultured fibroblasts from prolidase-deficient patients. J Control Release 102:181–190

    PubMed  CAS  Google Scholar 

  • Priestman DA, Butterworth J (1984) Prolidase deficiency: characteristics of human skin fibroblast prolidase using colorimetric and fluorimetric assays. J.Clin Chim Acta 142:263–271

    CAS  Google Scholar 

  • Richter AM, Lancaster GL, Choy FY et al (1989) Purification and characterization of activated human erythrocyte prolidase. Biochem Cell Biol 67:34–41

    Article  PubMed  CAS  Google Scholar 

  • Roderick SL, Matthews BW (1993) Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: a new type of proteolytic enzyme. Biochemistry 32:3907–3912

    PubMed  CAS  Google Scholar 

  • Royce PM, Steinmann B (2002) Prolidase deficiency. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders. Wiley-Liss, New York

    Google Scholar 

  • Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285

    PubMed  CAS  Google Scholar 

  • Schäffer MR, Efron PA, Thornton FJ et al (1997) Nitric oxide, an autocrine regulator of wound fibroblast synthetic function. J Immunol 158:2375–2381

    PubMed  Google Scholar 

  • Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266

    Google Scholar 

  • Sheffield LJ, Schlesinger P, Faull K et al (1977) Iminopeptiduria, skin ulcerations, and edema in a boy with prolidase deficiency. J Pediatr 91:578–583

    PubMed  CAS  Google Scholar 

  • Shrinath M, Walter JH, Haeney M et al (1997) Prolidase deficiency and systemic lupus erythematosus. Arch Dis Child 76:441–444

    Article  PubMed  CAS  Google Scholar 

  • Sjostrom H, Noren O (1974) Structural properties of pig intestinal proline dipeptidase. Biochim Biophys Acta 359:177–185

    PubMed  CAS  Google Scholar 

  • Songyang Z, Lu KP, Kwon YT et al (1996) A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol 16:6486–6493

    PubMed  CAS  Google Scholar 

  • Surazynski A, Donald SP, Cooper SK et al (2008) Extracellular matrix and HIF-1 signaling: the role of prolidase. Int J Cancer 122:1435–1440

    PubMed  CAS  Google Scholar 

  • Surazynski A, Liu Y, Miltyk W et al (2005) Nitric oxide regulates prolidase activity by serine/threonine phosphorylation. J Cell Biochem 96:1086–1094

    PubMed  CAS  Google Scholar 

  • Surazynski A, Palka J, Wolczynski S (2001) Phosphorylation of prolidase increases the enzyme activity. Mol Cell Biochem 220:95–101

    PubMed  CAS  Google Scholar 

  • Tan F, Morris PW, Skidgel RA et al (1993) Sequencing and cloning of human prolylcarboxypeptidase (angiotensinase C). Similarity to both serine carboxypeptidase and prolylendopeptidase families. J Biol Chem 268:16631–16638

    PubMed  CAS  Google Scholar 

  • Tanoue A, Endo F, Akaboshi I et al (1991) Molecular defect in siblings with prolidase deficiency and absence or presence of clinical symptoms. A 0.8-kb deletion with breakpoints at the short, direct repeat in the PEPD gene and synthesis of abnormal messenger RNA and inactive polypeptide. J Clin Invest 87:1171–1176

    PubMed  CAS  Google Scholar 

  • Tanoue A, Endo F, Kitano A et al (1990a) A single nucleotide change in the prolidase gene in fibroblasts from two patients with polypeptide positive prolidase deficiency. Expression of the mutant enzyme in NIH 3T3 cells. J Clin Invest 86:351–355

    PubMed  CAS  Google Scholar 

  • Tanoue A, Endo F, Matsuda I (1990b) Structural organization of the gene for human prolidase (peptidase D) and demonstration of a partial gene deletion in a patient with prolidase deficiency. J Biol Chem 265:11306–11311

    PubMed  CAS  Google Scholar 

  • Vanhoof G, Goossens F, De Meester I et al (1995) Proline motifs in peptides and their biological processing. FASEB J:736–744

    Google Scholar 

  • Venturini M (2002) Rational development of capecitabine. Eur J Cancer 38(Suppl 2):3–9

    PubMed  Google Scholar 

  • Viglio S, Annovazzi L, Conti B et al (2006) The role of emerging techniques in the investigation of prolidase deficiency: from diagnosis to the development of a possible therapeutical approach. J Chromatogr B Analyt Technol Biomed Life Sci 832:1–8

    PubMed  CAS  Google Scholar 

  • Wang H, Kurien BT, Lundgren D et al (2006a) A nonsense mutation of PEPD in four Amish children with prolidase deficiency. Am J Med Genet A 140:580–585

    PubMed  Google Scholar 

  • Wang SH, Zhi QW, Sun MJ (2005) Purification and characterization of recombinant human liver prolidase expressed in Saccharomyces cerevisiae. Arch Toxicol 79:253–259

    PubMed  CAS  Google Scholar 

  • Wang SH, Zhi QW, Sun MJ (2006b) Dual activities of human prolidase. Toxicol In Vitro 20:71–77

    PubMed  CAS  Google Scholar 

  • Wilce MC, Bond CS, Dixon NE et al (1998) Structure and mechanism of a proline-specific aminopeptidase from Escherichia coli. Proc Natl Acad Sci U S A 95:3472–3477

    PubMed  CAS  Google Scholar 

  • Willingham K, Maher MJ, Grunden AM et al (2001) Crystallization and characterization of the prolidase from Pyrococcus furiosus. Acta Crystallogr D Biol Crystallogr 57:428–430

    PubMed  CAS  Google Scholar 

  • Yaffe MB, Smerdon SJ (2004) The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function. Annu Rev Biophys Biomol Struct 33:225–244

    PubMed  CAS  Google Scholar 

  • Yaron A, Naider F (1993) Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol 28:31–81

    PubMed  CAS  Google Scholar 

  • Yasuda K, Ogata K, Kariya K et al (1999) Corticosteroid treatment of prolidase deficiency skin lesions by inhibiting iminodipeptide-primed neutrophil superoxide generation. Br J Dermatol 141:846–851

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Prof. Vittorio Bellotti and Prof. Giampaolo Merlini for providing the mass spectrometry technology at the “Laboratori di biotecnologie”, IRCCS Policlinico S. Matteo, Pavia and P. Arcidiaco, “Centro Grandi Strumenti”, University of Pavia, for Edman’s sequencing. This work was supported by MIUR 2006 (Grant n. 2006050235), Fondazione Cariplo and the European Community (FP6, “EuroGrow” project, LSHM-CT-2007-037471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Forlino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupi, A., Tenni, R., Rossi, A. et al. Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations. Amino Acids 35, 739–752 (2008). https://doi.org/10.1007/s00726-008-0055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0055-4

Keywords

Navigation