Skip to main content
Log in

The Non-innocent Role of Spin Traps in Monitoring Radical Formation in Copper-Catalyzed Reactions

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Spin traps, like 5,5-dimethyl-1-pyrroline N-oxide (DMPO), are commonly used to identify radicals formed in numerous chemical and biological systems, many of which contain metal-ion complexes. In this study, continuous wave electron paramagnetic resonance and hyperfine spectroscopy are used to prove the equatorial ligation of DMPO(-derived) molecules to Cu(II), even in the presence of competing nitrogen bases. The experimental data are corroborated with density functional theory calculations. It is shown that 14N HYSCORE can be used as a fingerprint method to reveal the coordination of DMPO(-derived) molecules to Cu(II), an interaction that might influence the outcome of spin-trapping experiments and consequently the conclusion drawn on the mechanism under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.S. Egorova, V.P. Ananikov, Organometallics 36, 4071 (2017)

    Google Scholar 

  2. H. Sterckx, B. Morel, B.U.W. Maes, Angew. Chem. Int. Ed. 58, 7946 (2019)

    Google Scholar 

  3. R. Trammell, K. Rajabimoghadam, I. Garcia-Bosch, Chem. Rev. 119, 2954 (2019)

    Google Scholar 

  4. S.D. McCann, S.S. Stahl, Acc. Chem. Res. 48, 1756 (2015)

    Google Scholar 

  5. K.W. Shimkin, D.A. Watson, Beilstein J. Org. Chem. 11, 2278 (2015)

    Google Scholar 

  6. M.M. Roessler, E. Salvadori, Chem. Soc. Rev. 47, 2534 (2018)

    Google Scholar 

  7. A. Alberti, D. Macciantelli, in Electron Paramagnetic Resonance—A Practitioner’s Toolkit. ed. by M. Brustolon, E. Giamello (Wiley, Hoboken, 2009), p. 287

  8. C.L. Hawkins, M.J. Davies, Biochim. Biophys. Acta 1840, 708 (2014)

    Google Scholar 

  9. D. Dvoranová, Z. Barbieriková, V. Brezová, Molecules 19, 17279 (2014)

    Google Scholar 

  10. Y.X. Li, X. Chen, RSC Adv 9, 33395 (2019)

    Google Scholar 

  11. Y. Feng, P.H. Lee, D. Wu, Z. Zhou, H. Li, K.J. Shih, Hazard. Mater. 331, 81 (2017)

    Google Scholar 

  12. M.A. Bizeto, W.A. Alves, C.A.S. Barbosa, A.M.D.C. Ferreira, V.R.L. Constantino, Inorg. Chem. 45, 6214 (2006)

    Google Scholar 

  13. M. Yamada, K.D. Karlin, S. Fukuzumi, Chem. Sci. 7, 2856 (2016)

    Google Scholar 

  14. G. Cerchiaro, G.A. Micke, M.F.M. Tavares, A.M.D. Ferreira, J. Mol. Catal. Chem. 221, 29 (2004)

    Google Scholar 

  15. L. Khchatryan, C.A. McFerrin, R.W. Hall, B. Dellinger, Environ. Sci. Technol. 48, 9220 (2014)

    ADS  Google Scholar 

  16. S. Hamulakova, P. Poprac, K. Jomova, V. Brezova, P. Lauro, L. Drostinova, D. Jun, V. Sepsova, M. Hrabinova, O. Soukup, P. Kristian, Z. Gazova, Z. Bednarikova, K. Kuca, M. Valko, J. Inorg. Biochem. 161, 52 (2016)

    Google Scholar 

  17. P.M. Hanna, W. Chamulitrat, R.P. Mason, Arch. Biochem. Biophys. 296, 640 (1992)

    Google Scholar 

  18. E.H. Fowles, B.C. Gilbert, M.R. Giles, A.C. Whitwood, Free Radic. Res. 41, 515 (2007)

    Google Scholar 

  19. X. Qiao, S. Chen, L. Tan, H. Zheng, Y. Ding, Z. Ping, Magn. Reson. Chem. 39, 207 (2001)

    Google Scholar 

  20. D.A. Iovan, A.T. Wrobel, A.A. McClelland, A.B. Scharf, G.A. Edouard, T.A. Bettley, Chem. Commun. 53, 10306 (2017)

    Google Scholar 

  21. S. Van Doorslaer, eMagRes 6, 51 (2017)

    Google Scholar 

  22. J.R. Harmer, eMagRes 5, 1493 (2016)

    Google Scholar 

  23. H. Sterckx, C. Sambiagio, V. Médan-Navarrete, B.U.W. Maes, Adv. Synth. Catal. 359, 3226 (2017)

    Google Scholar 

  24. P. Höfer, A. Grupp, H. Nebenführ, M. Mehring, Chem. Phys. Lett. 132, 279 (1986)

    ADS  Google Scholar 

  25. E.R. Davies, Phys. Lett. A 47, 1 (1974)

    ADS  Google Scholar 

  26. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)

    ADS  Google Scholar 

  27. F. Neese, J. Chem. Phys. 115, 11080 (2001)

    ADS  Google Scholar 

  28. F. Neese, J. Phys. Chem. A 105, 4290 (2001)

    Google Scholar 

  29. F. Neese, J. Chem. Phys. 118, 3939 (2003)

    ADS  Google Scholar 

  30. F. Neese, J. Chem. Phys. 122, 034107 (2001)

    ADS  Google Scholar 

  31. S. Sinnecker, A. Rajendran, A. Klamt, M. Diedenhofen, F. Neese, J. Phys. Chem. A 110, 2235 (2006)

    Google Scholar 

  32. J.P. Perdew, Phys. Rev. B 33, 8822 (1986)

    ADS  Google Scholar 

  33. J.P. Perdew, Phys. Rev. B 34, 7406 (1986)

    ADS  Google Scholar 

  34. A.D. Becke, Phys. Rev. A. 38, 3098 (1988)

    ADS  Google Scholar 

  35. A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992)

    ADS  Google Scholar 

  36. P. Stephens, F. Devlin, C. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)

    Google Scholar 

  37. A.D. Becke, J. Chem. Phys. 98, 1372 (1993)

    ADS  Google Scholar 

  38. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)

    ADS  Google Scholar 

  39. W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257 (1972)

    ADS  Google Scholar 

  40. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980)

    ADS  Google Scholar 

  41. V. Barone, in Recent Advances in Density Functional Methods, Part I. ed. by D.P. Chong (World Scientific Publ Co, Singapore, 1995), p. 287

    Google Scholar 

  42. E.J. Ukpong, N.W. Akpanudo, J. Prasad, Afr. J. Pure Appl. Chem. 4, 38 (2010)

    Google Scholar 

  43. H. Sterckx, J. De Houwer, C. Mensch, I. Caretti, K.A. Tehrani, W.A. Herrebout, S. Van Doorslaer, B.U.W. Maes, Chem. Sci. 7, 346 (2016)

    Google Scholar 

  44. D.P. Freyberg, T. Isobe, S. Misumi, Bull. Chem. Soc. Jpn. 45, 1654 (1972)

    Google Scholar 

  45. H.J. Scholl, J. Hüttermann, J. Phys. Chem. 96, 9684 (1992)

    Google Scholar 

  46. A. Pöppl, M. Hartmann, W. Böhlmann, R. Böttcher, J. Phys. Chem. A 102, 3599 (1998)

    Google Scholar 

  47. E. Carter, K.M. Sharples, J.A. Platts, D.M. Murphy, Phys. Chem. Chem. Phys. 17, 11445 (2015)

    Google Scholar 

  48. P. Nunes, N.V. Nagy, E.C.B.A. Alegria, A.J.L. Pombeiro, I. Correia, J. Mol. Struct. 1060, 142 (2014)

    ADS  Google Scholar 

  49. W. Libus, S.K. Hoffmann, M. Kluczkowski, H. Twardowska, Inorg. Chem. 19, 1625 (1980)

    Google Scholar 

  50. V. Balasubramanian, M. Ezhevskaya, H. Moons, M. Neuburger, C. Cristescu, S. Van Doorslaer, C. Palivan, Phys. Chem. Chem. Phys. 11, 6778 (2009)

    Google Scholar 

  51. S.A. Dikanov, A.P. Spoyalov, J. Hüttermann, J. Chem. Phys. 100, 7973 (1994)

    ADS  Google Scholar 

  52. S. Van Doorslaer, M. Murphy, Res. Chem. Intermed. 33, 807 (2007)

    Google Scholar 

  53. N. Ritterskamp, K. Sharples, E. Richards, A. Folli, M. Chiesa, J.A. Platts, D.M. Murphy, Inorg. Chem. 56, 11862 (2017)

    Google Scholar 

  54. N.M. Atherton, A. Horsewill, J. Mol. Phys. 42, 985 (1981)

    ADS  Google Scholar 

  55. S. Stoll, C. Calle, G. Mitrikas, A. Schweiger, J. Magn. Reson. 177, 93 (2005)

    ADS  Google Scholar 

  56. M. Florent, I. Kaminker, V. Nagarjan, D. Goldfarb, J. Magn. Reson. 210, 192 (2011)

    ADS  Google Scholar 

  57. P.M. Woyciesjes, N. Janes, S. Ganapathy, Y. Hiyama, T.L. Brown, E. Oldfield, Magn. Reson. Chem. 23, 315 (1985)

    Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the Research Foundation Flanders (FWO-Vlaanderen) for support of this work through the project G093317N. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement no. 792946 (H2020-MSCA-IF iSPY to H. Y. V. Ching). S. Van Doorslaer and B. Maes are members of the Excellence centre CASCH—Catalysis for sustainable organic chemistry of the University of Antwerp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Van Doorslaer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanipour, M., Ching, H.Y.V., Sterckx, H. et al. The Non-innocent Role of Spin Traps in Monitoring Radical Formation in Copper-Catalyzed Reactions. Appl Magn Reson 51, 1529–1542 (2020). https://doi.org/10.1007/s00723-020-01284-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01284-0

Navigation