Skip to main content
Log in

Improved Sensitivity by Isotopic Substitution in Distance Measurements Based on Double Quantum Coherence EPR

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

We studied the effects of isotopic substitution (namely, deuterium substitution in solvents and 15N substitution in a spin label) on improving the sensitivity of distance measurements based on double quantum coherence (DQC) electron paramagnetic resonance (EPR) using cardiac troponin C. Deuteration of solvents increased the phase memory time, T m, by a factor of only 1.7, whereas the DQC amplitude increased significantly at long pulse intervals. The two-pulse echo amplitude was 1.7 times larger for the 15N spin label than it was for the 14N label because of the limited bandwidth of the microwave pulses. In the case of DQC, the echo is 2.7 times greater for the 15N label than it is for the 14N label due to the accumulated effects of the finite bandwidth. The combination of the two isotopic substitutions is expected to increase the sensitivity by about a factor of 6 when measuring distances longer than 4–5 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.P. Borbat, J.H. Freed, in Biological Magnetic Resonance 19, ed. by L.J. Berliner, S.S. Eaton, G.R. Eaton (Kluwer Academic, Boston, 2000), pp. 383–459

  2. P.P. Borbat, H.S. Mchaourab, J.H. Freed, J. Am. Chem. Soc. 124, 5304–5314 (2002)

    Article  Google Scholar 

  3. M. Pannier, S. Veit, A. Godt, G. Jescke, H.W. Spiess, J. Magn. Reson. 142, 331–340 (2000)

    Article  ADS  Google Scholar 

  4. A.D. Milov, A.G. Maryasov, Y.D. Tsvetkov, Appl. Magn. Reson. 15, 107–143 (1998)

    Article  Google Scholar 

  5. M.D. Rabenstein, Y.K. Shin, Proc. Natl. Acad. Sci. USA 92, 8239–8243 (1995)

    Article  ADS  Google Scholar 

  6. S. Ueki, M. Nakamura, T. Komori, T. Arata, Biochemistry 44, 411–416 (2005)

    Article  Google Scholar 

  7. H.S. Mchaourab, K.J. Oh, C.J. Fang, W.L. Hubbell, Biochemistry 36, 307–316 (1997)

    Article  Google Scholar 

  8. C. Altenbach, K.J. Oh, R.J. Trabanino, K.H. Hideg, W.L. Hubbell, Biochemistry 40, 15471–15482 (2001)

    Article  Google Scholar 

  9. Z.T. Farhbakhsh, Q.L. Huang, L.L. Ding, C. Altenbach, H.J. Steinhoff, J. Horwitz, W.L. Hubbell, Biochemistry 34, 509–516 (1995)

    Article  Google Scholar 

  10. S.K. Misra, P.P. Borbat, J.H. Freed, Appl. Magn. Reson. 36, 237–258 (2009)

    Article  Google Scholar 

  11. G. Jeschke, A. Bender, H. Paulsen, H. Zimmermann, A. Godt, J. Magn. Reson. 169, 1–12 (2004)

    Article  ADS  Google Scholar 

  12. I.M. Brown, in Time Domain Electron Spin Resonance, ed. by L. Kevan, R.N. Schwartz (New York, Wiley, 1972), pp. 195–229

  13. G. Jeschke, H. Zimmermann, A. Godt, J. Magn. Reson. 180, 137–146 (2006)

    Article  ADS  Google Scholar 

  14. I. Ohtsuki, K. Maruyama, S. Ebashi, Adv. Protein Chem. 38, 1–67 (1986)

    Article  Google Scholar 

  15. A.S. Zot, J.D. Potter, Annu. Rev. Biophys. Biophys. Chem. 16, 535–559 (1987)

    Article  Google Scholar 

  16. S. Takeda, A. Yamashita, K. Maeda, Y. Maeda, Nature 424, 35 (2003)

    Article  ADS  Google Scholar 

  17. S.K. Sia, M.X. Li, L. Spyracopoulos, S.M. Gagne, W. Liu, J.A. Putkey, B.D. Sykes, J. Biol. Chem. 272, 18216–18221 (1997)

    Article  Google Scholar 

  18. L. Spyracopoulos, M.X. Li, S.K. Sia, S.M. Gagne, M. Chandra, R.J. Solaro, B.D. Sykes, Biochemistry 36, 12138–12146 (1997)

    Article  Google Scholar 

  19. M. Nakamura, S. Ueki, H. Hara, T. Arata, J. Mol. Biol. 348, 127–137 (2005)

    Article  Google Scholar 

  20. Y. Mizuta, S. Kazama, Y. Ohba, N. Sakai, Y. Yamamoto, Y. Shimoyama, Rev. Sci. Instrum. 79, 044705 (2008)

    Article  ADS  Google Scholar 

  21. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance, (Oxford University Press, New York, 2001), pp. 208–232

  22. M. Bonora, J. Becker, S. Saxena, J. Magn. Reson. 170, 278–283 (2004)

    Article  ADS  Google Scholar 

  23. W.B. Mims, in Electron Paramagnetic Resonance, ed. by S. Geschwind (Plenum, New York, 1972), p. 315

    Google Scholar 

  24. A. Zecevic, G.R. Eaton, S.S. Eaton, M. Lindgren, Mol. Phys. 95, 1255–1263 (1998)

    Article  ADS  Google Scholar 

  25. Y. Ohba, Spectrochim. Acta A 56, 235–243 (2000)

    Article  ADS  Google Scholar 

  26. K.M. Salikhov, S.A. Dzuba, A.M. Raitsimring, J. Magn. Reson. 42, 255–276 (1981)

    Google Scholar 

  27. M. Lindgren, G.R. Eaton, S.S. Eaton, B.-H. Jonsson, P. Hammarström, M. Svensson, U. Carlsson, J. Chem. Soc. Perkin Trans. 2, 2549–2554 (1997)

    Google Scholar 

  28. M. Huber, M. Lindgren, P. Hammarström, L.-G. Mårtensson, U. Carlsson, G.R. Eaton, S.S. Eaton, Biophys. Chem. 94, 245–256 (2001)

    Article  Google Scholar 

  29. R. Ward, A. Bowman, E. Sozudogru, H. El-Mkami, T. Owen-Hughes, D.G. Norman, J. Magn. Reson. 207, 164–167 (2010)

    Article  ADS  Google Scholar 

  30. W.B. Mims, in Electron Paramagnetic Resonance, ed. by S. Geschwind (Plenum, New York, 1972), p. 328

    Google Scholar 

  31. G. Jeschke, V. Chechik, P. Ionita, A. Godt, H. Zimmermann, J. Banham, C.R. Timmel, D. Hilger, H. Jung, Appl. Magn. Reson. 30, 473–498 (2006)

    Article  Google Scholar 

  32. Y.W. Chiang, P.P. Borbat, J.H. Freed, J. Magn. Reson. 172, 279–295 (2005)

    Article  ADS  Google Scholar 

  33. P.C. Hansen, D.P. O’Leary, SIAM J. Sci. Comput. 14, 1487–1503 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Weese, Comput. Phys. Commun. 69, 99–111 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research (nos. 21023004 and 22350002) from the Ministry of Education, Science, Culture, and Sports (Japan) and by the Centers of Research Excellence in Science and Technology program of the Japanese Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Ohba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, J., Ueki, S., Arata, T. et al. Improved Sensitivity by Isotopic Substitution in Distance Measurements Based on Double Quantum Coherence EPR. Appl Magn Reson 42, 473–485 (2012). https://doi.org/10.1007/s00723-012-0317-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0317-x

Keywords

Navigation