Skip to main content
Log in

Intramolecular Hydrogen Bonding in Calix[4]arene-Based Nitroxide Monoradical and Biradical as Studied by CW-ESR and Pulse-ESR HYSCORE Spectroscopy

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A calix[4]arene-based biradical with two tert-butyl nitroxide radicals and a monoradical derived from the biradical have been studied by continuous-wave electron spin resonance (CW-ESR) and pulse-ESR-based hyperfine sublevel correlation (HYSCORE) spectroscopy. The two nitroxide radical sites antiferromagnetically interact with each other, generating a thermally accessible triplet state located 4 cm−1 above the singlet ground state. The present fine-structure and hyperfine spectral simulation for the spin Hamiltonian parameters of the biradical is sensitive to the local molecular structure at the spin-bearing site, illustrating a salient electronic structure of the radical sites with the π-orbitals on the nitrogen (and oxygen) atoms cross-facing each other. The derived structure contrasts with the molecular structure determined by an X-ray crystal analysis for the hydroxylamine precursor of the biradical. The distance between the two midpoints of the nitrogen–oxygen bonds at the radical sites is by 0.234 nm longer than the one (=0.314 nm) of the two hydroxyl groups of the precursor determined by the X-ray analysis. The lack of intramolecular hydrogen bonds between the nitrogen and hydrogen of the hydroxyl groups, caused by the oxidation of the hydroxyamino precursor, gives rise to such a sizable increase in the distance between the radical sites. The HYSCORE experiments gave a direct evidence of the local molecular structure of the radical site of the partially oxidized monoradical. The experimentally derived molecular structures of both the bi-, monoradicals and the precursor are in good agreement with those obtained by density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. When the distance r is calculated in units of nm, the proportional factor μ 0 β 2/4π is equal to 4.3297 × 10−4 in units of cm−1

  2. Other paramagnetic calix[4]arenes with two nitroxide sites in the upper rim (ref 4) give similar ESR spectral patterns in the allowed and forbidden transition regions, indicating that the biradical has a similar molecular structure in the frozen solution matrix

References

  1. C.D. Gutsche, Calixarenes Revisited (The Royal Society of Chemistry, Cambridge, 1998)

  2. P. Molenveld, J.F.J. Engbersen, H. Kooijman, A.L. Spek, D.N. Reinhoudt, J. Am. Chem. Soc. 120, 6726–6737 (1998)

    Article  Google Scholar 

  3. G. Deng, T. Sakai, Y. Kawahara, S. Shinkai, Tetrahedron Lett. 33, 2163–2166 (1992)

    Article  Google Scholar 

  4. G. Ulrich, P. Turek, R. Ziessel, Tetrahedron Lett. 37, 8755–8758 (1996)

    Article  Google Scholar 

  5. K. Araki, R. Nakamura, H. Otsuka, S. Shinkai, J. Chem. Soc. Chem. Commun. 20, 2121–2122 (1995)

    Article  Google Scholar 

  6. P. Franchi, M. Lucarini, G.F. Pedulli, D. Sciotto, Angew. Chem. Int. Ed. 39, 263–266 (2000)

    Article  Google Scholar 

  7. A. Rajca, S. Mukherjee, M. Pink, S. Rajca, J. Am. Chem. Soc. 128, 13497–13507 (2006)

    Article  Google Scholar 

  8. A. Olankitwanit, V. Kathirvelu, S. Rajca, G,R. Eaton, S.S. Eaton, A. Rajca, Chem. Commun. 47, 6443–6445 (2011)

    Article  Google Scholar 

  9. K. Sato, S. Nakazawa, R. Rahimi, T. Ise, S. Nishida, T. Yoshino, N. Mori, K. Toyota, D. Shiomi, Y. Yakiyama, Y. Morita, M. Kitagawa, K. Nakasuji, M. Nakahara, H. Hara, P. Carl, P. Höfer, T. Takui, J. Mater. Chem. 19, 3739–3754 (2009)

    Article  Google Scholar 

  10. K. Sato, S. Nakazawa, R. Rahimi, S. Nishida, T. Ise, D. Shiomi, K. Toyota, Y. Morita, M. Kitagawa, P. Carl, P. Höfer, T. Takui, in Molecular Realizations of Quantum Computing, ed. by M. Nakahara, Y. Ota, R. Rahimi, (World Scientific, Singapore, 2009), pp. 58–162

  11. A. Arduini, W.M. McGregor, A. Pochini, A. Secchi, F. Ugozzoli, R. Ungaro, J. Org. Chem. 61, 6881–6887 (1996)

    Article  Google Scholar 

  12. G.M.L. Consoli, F. Cunsolo, C. Geraci, V. Sgarlata, Org. Lett. 6, 4163–4166 (2004)

    Article  Google Scholar 

  13. Y. Morita, Y. Yakiyama, S. Nakazawa, T. Murata, T. Ise, D. Hashizume, D. Shiomi, K. Sato, M. Kitagawa, K. Nakasuji, T. Takui, J. Am. Chem. Soc. 132, 6944–6946 (2010)

    Article  Google Scholar 

  14. Q. Wang, Y. Li, G.-S. Wu, Chem. Commun., 1268–1269 (2002)

  15. K. Sato, T. Sawai, D. Shiomi, T. Takui, Q. Wang, J.-S. Wang, Y. Li, G.-S. Wu, Synth. Met. 137, 1197–1198 (2003)

    Article  Google Scholar 

  16. A. Rassat, H.U. Sieveking, Angew. Chem. Int. Ed. Engl. 11, 303–304 (1972)

    Article  Google Scholar 

  17. O. Takizawa, J. Yamauchi, H. Oyha-Nishiguchi, Y. Deguchi, Bull. Chem. Soc. Jpn. 46, 1991–1995 (1973)

    Article  Google Scholar 

  18. S. Gambarelli, D. Jaouen, A. Rassat, L.-C. Brunel, C. Chachaty, J. Phys. Chem. 100, 9605–9609 (1996)

    Article  Google Scholar 

  19. A. Rajca, K. Lu, S. Rajca, C.R. Ross II, Chem. Commun. 13, 1249–1250 (1999)

    Article  Google Scholar 

  20. S.S. Eaton, K.M. More, B.M. Sawant, G.R. Eaton, J. Am. Chem. Soc. 105, 6560–6567 (1983)

    Article  Google Scholar 

  21. J. Isoya, H. Kanda, J.R. Norris, J. Tang, M.K. Bowman, Phys. Rev. B 41, 3905–3913 (1990)

    Article  ADS  Google Scholar 

  22. A.V. Astashkin, A. Schweiger, Chem. Phys. Lett. 174, 595–602 (1990)

    Article  ADS  Google Scholar 

  23. K. Sato, D. Shiomi, T. Takui, K. Itoh, T. Kaneko, E. Tsuchida, H. Nishide, J. Spectrosc. Soc. Jpn. 43, 280–291 (1994)

    Article  Google Scholar 

  24. K. Sato, M. Yano, M. Furuichi, D. Shiomi, T. Takui, K. Abe, K. Itoh, A. Higuchi, K. Katsuma, Y. Shirota, J. Am. Chem. Soc. 119, 6607–6613 (1997)

    Article  Google Scholar 

  25. H. Tomioka, M. Hattori, K. Hirai, K. Sato, D. Shiomi, T. Takui, K. Itoh, J. Am. Chem. Soc. 120, 1106–1107 (1998)

    Article  Google Scholar 

  26. K. Sato, H. Matsuoka, D. Shiomi, T. Takui, K. Itoh, Mol. Cryst. Liq. Cryst. 335, 333–342 (1999)

    Article  Google Scholar 

  27. H. Matsuoka, K. Sato, D. Shiomi, T. Takui, Appl. Magn. Reson. 23, 517–538 (2003)

    Article  Google Scholar 

  28. S. Nakazawa, K. Sato, D. Shiomi, M.L.T.M.B. Franco, M.C.R.L.R. Lazana, M.C.B.L. Shohoji, K. Itoh, T. Takui, Inorg. Chim. Acta 361, 4031–4037 (2008)

    Article  Google Scholar 

  29. S. Nakazawa, K. Sato, D. Shiomi, M. Yano, T. Kinoshita, M.L.T.M.B. Franco, M.C.R.L.R. Lazana, M.C.B.L. Shohoji, K. Itoh, T. Takui, Phys. Chem. Chem. Phys. 13, 1424–1433 (2011)

    Article  Google Scholar 

  30. T. Sawai, K. Sato, T. Ise, D. Shiomi, K. Toyota, Y. Morita, T. Takui, Angew. Chem. Int. Ed. 47, 3988–3990 (2008)

    Article  Google Scholar 

  31. Y. Teki, I. Fujita, T. Takui, T. Kinoshita, K. Itoh, J. Am. Chem. Soc. 116, 11499–11505 (1994)

    Article  Google Scholar 

  32. T. Koto, K. Sato, D. Shiomi, K. Toyota, K. Itoh, E. Wasserman, T. Takui, J. Phys. Chem. A 113, 9521–9526 (2009)

    Article  Google Scholar 

  33. T. Koto, K. Sugisaki, K. Sato, D. Shiomi, K. Toyota, K. Itoh, E. Wasserman, P.M. Lahti, T. Takui, Appl. Magn. Reson. 37, 703–736 (2009)

    Article  Google Scholar 

  34. M. Griffin, A. Muys, C. Noble, D. Wang, C. Eldershaw, K.E. Gates, K. Burrage, G.R. Hanson, Mol. Phys. Rep. 26, 60–84 (1999)

    Google Scholar 

  35. O.H. Griffith, D.W. Cornell, H.M. McConnell, J. Chem. Phys. 43, 2909–2910 (1965)

    Article  ADS  Google Scholar 

  36. L.J. Libertini, O.H. Griffith, J. Chem. Phys. 53, 1359–1367 (1970)

    Article  ADS  Google Scholar 

  37. A. Bencini, D. Gatteschi, EPR of Exchange Coupled Systems (Springer-Verlag, Berlin, 1990)

    Google Scholar 

  38. K. Sugisaki, K. Toyota, K. Sato, D. Shiomi, M. Kitagawa, T. Takui, Chem. Phys. Lett. 477, 369–373 (2009)

    Article  ADS  Google Scholar 

  39. K. Sugisaki, K. Toyota, K. Sato, D. Shiomi, M. Kitagawa, T. Takui, Chem. Phys. Chem. 11, 3146–3151 (2010)

    Article  Google Scholar 

  40. K. Sugisaki, K. Toyota, K. Sato, D. Shiomi, M. Kitagawa, T. Takui, Phys. Chem. Chem. Phys. 13, 6970–6980 (2011)

    Article  Google Scholar 

  41. P. Höfer, A. Grupp, H. Nebenführ, M. Mehring, Chem. Phys. Lett. 132, 279–282 (1986)

    Article  ADS  Google Scholar 

  42. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98, Revision A.9 (Gaussian, Inc., Pittsburgh PA, 1998)

Download references

Acknowledgments

This work has been partially supported by a Grant-in-Aid for Encouragement of Young Scientists, Scientific Research (B) and Grants-in-Aid for Scientific Research on Priority Areas “Molecular Magnetism”, “Delocalized Electronic Systems”, “Development of Molecular Conductors and Magnets”, and “Application of Molecular Spins” from the Ministry of Education, Culture, Sports, Science and Technology, Japan. This work has been supported by Scientific Research on Innovative Areas, “Quantum Cybernetics” from the Ministry of Education, Sports, Culture, Science and Technology, Japan. The support for the present work by Japan Science and Technology Agency through CREST project, “Implementation of Molecular Spin Quantum Computers” and by the FIRST project on “Quantum Information Processing”, JSPS (the Japan Society for the Promotion of Science) is also acknowledged. One of the authors (T.S.) acknowledges Research Fellowships of JSPS for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kazunobu Sato or Takeji Takui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawai, T., Sato, K., Shiomi, D. et al. Intramolecular Hydrogen Bonding in Calix[4]arene-Based Nitroxide Monoradical and Biradical as Studied by CW-ESR and Pulse-ESR HYSCORE Spectroscopy. Appl Magn Reson 41, 337–352 (2011). https://doi.org/10.1007/s00723-011-0269-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0269-6

Keywords

Navigation