Skip to main content
Log in

The calculated electronic and optical properties of β-Ga2O3 based on the first principles

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Introduction

The electronic and optical properties of β-Ga2O3 have been investigated by CASTEP using first principles. It is found that β-Ga2O3 has an indirect band gap and the conduction band base is located at the Γ point. The stability of β-Ga2O3 is demonstrated by the calculation of elastic constants, and the ductility of β-Ga2O3 is demonstrated by the ratio of Poisson’s ratio to shear modulus. The optical property analysis shows that β-Ga2O3 has a high absorption capacity in the ultraviolet region, but a low absorption capacity in visible and infrared light.

Context

The structure, optical, and electronic properties of β-Ga2O3 are calculated and analyzed based on first-principles calculation. The optimized structures of β-Ga2O3 are in good agreement with previously studied. In this paper, the elastic, electronic, and optical properties of β-Ga2O3 are calculated.

Methods

The CASTEP code was employed to execute these calculations in the present work, where the exchange–correlation interactions were treated in the generalized gradient approximation (GGA) using the Perdew–Burke–Ernzerhof (PBE) functional in the geometry optimizations and electronic and elastic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Code availability

N/A.

References

  1. Varley JB, Shen B, Higashiwaki M (2022) J. Appl. Phys. 131(23):230401

    CAS  Google Scholar 

  2. Wright NG, Horsfall AB, Vassilevski K (2008) Mater Today 11(1–2):16–21

    CAS  Google Scholar 

  3. Woods-Robinson R, Han Y, Zhang H et al (2020) Chem Rev 120(9):4007–4055

    CAS  PubMed  Google Scholar 

  4. Wei D, Ma Y, Guo G et al (2023) Phys. Scr. 98(6):065012

    Google Scholar 

  5. Chen X, Liu K, Zhang Z et al (2016) ACS Appl Mater Interfaces 8(6):4185–4191

    CAS  PubMed  Google Scholar 

  6. Guo D, Wu Z, Li P et al (2014) Opt Mater Express 4(5):1067–1076

    Google Scholar 

  7. Qin Y, Albano B, Spencer J et al (2023) J. Phys. D: Appl. Phys. 56(9):093001

    Google Scholar 

  8. Wen Li (2020) Spec Equip Electron Ind 49(05):64–69

    Google Scholar 

  9. Zhao D (2019) The development of the domestic semiconductor industry research. Master's Thesis. Beijing Univ Technol

  10. Gu Y, Li X, Wu X (2023) China Integr Circ 32(03):22–25+36

    Google Scholar 

  11. Ozpineci B (2004). Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications. Oak Ridge National Lab (ORNL), Oak Ridge, TN (United States)

    Google Scholar 

  12. Gupta KM, Gupta N, Gupta KM et al (2016) Advanced Semiconducting Materials and Devices. pp 3–40

    Google Scholar 

  13. Hu J, Yu B, Zhou J (2023) Adv. Eng. Mater 25(19):2300688

    CAS  Google Scholar 

  14. Zhao X, Ding M, Sun H et al (2021) Semicond Semimetals Elsevier 107:101–151

    Google Scholar 

  15. Lee M, Yang M, Lee HY et al (2021) Mater Sci Semicond Process 123:105565

    CAS  Google Scholar 

  16. Mu W, Jia Z, Yin Y et al (2017) J Alloy Compd 714:453–458

    CAS  Google Scholar 

  17. Galazka Z, Irmscher K, Uecker R et al (2014) J Cryst Growth 404:184–191

    CAS  Google Scholar 

  18. Oishi T, Koga Y, Harada K et al (2015) Appl Phys Express 8(3):031101

    CAS  Google Scholar 

  19. Roy R, Hill VG, Osborn EF (1952) J Am Chem Soc 74(3):719–722

    CAS  Google Scholar 

  20. Playford HY, Hannon AC, Barney ER et al (2013) Chem–A Eur J 19(8):2803–2813

    CAS  Google Scholar 

  21. Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K, Tanaka I (2007) J Phys Condens Matter 19:346211

    Google Scholar 

  22. Shi J, Liang H, Xia X et al (2021) Appl Surf Sci 569:151010

    CAS  Google Scholar 

  23. Dong X, Yu S, Mu W et al (2023) J. Mater. Chem. C 11(26):8919–8928

    CAS  Google Scholar 

  24. Perez-Tomas A, Chikoidze E, Dumont Y et al (2019) Mater Today Energy 14:100350

    Google Scholar 

  25. Zeng G, Li XX, Li YC et al (2022) ACS Appl Mater Interfaces 14(14):16846–16855

    CAS  PubMed  Google Scholar 

  26. Chen H, Liu K, Hu L et al (2015) Mater Today 18(9):493–502

    CAS  Google Scholar 

  27. Zhang J, Li B, Xia C et al (2006) J Phys Chem Solids 67(12):2448–2451

    CAS  Google Scholar 

  28. Sang L, Liao M, Sumiya M (2013) Sensors 13(8):10482–10518

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao B, Wang F, Chen H et al (2015) Nano Lett 15(6):3988–3993

    CAS  PubMed  Google Scholar 

  30. Mu W X (2018) Research on Growth, Processing and Properties of β-Ga2O3 single crystal. Ph. D. Dissertation. Shandong University

  31. Kyrtsos A, Matsubara M, Bellotti E (2017) Phys Rev B 95(24):245202

    Google Scholar 

  32. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K (2005) Mater 220:567

    CAS  Google Scholar 

  33. Mentefa A, Boufadi FZ, Ameri M et al (2021) J Supercond Novel Magn 34:269–283

    CAS  Google Scholar 

  34. Boudiaf K, Bouhemadou A, Boudrifa O et al (2017) J Electron Mater 46:4539–4556

    CAS  Google Scholar 

  35. Birch F (1947) Phys Rev 71(11):809

    CAS  Google Scholar 

  36. Fan Q, Zhao R, Zhang W et al (2022) Phys Chem Chem Phys 24(11):7045–7049

    CAS  PubMed  Google Scholar 

  37. Tang C (2017) Research on the First Principles of effective P-type doping in Gallium oxide crystals. Master's Thesis. Shandong University

  38. Born M, Huang K, Lax M (1955) Am J Phys 23(7):474–474

    Google Scholar 

  39. Juan Gao, Qijun Liu, Chenglu Jiang et al (2022) Chinese Journal of High Pressure Physics 36(05):3–13

    Google Scholar 

  40. Anam B, Gaston N (2021) Principles Design. ChemPhysChem 22(22):2362–2370

    CAS  PubMed  Google Scholar 

  41. Benkaddour Y, Abdelaoui A, Yakoubi A et al (2018) J Supercond Novel Magn 31:395–403

    CAS  Google Scholar 

  42. Voigt W (1928) Adv Earth Sci 1:1–978

    Google Scholar 

  43. Reuß A (1929) ZAMM-J Appl Math Mech/Z Angew Math Mech 9(1):49–58

    Google Scholar 

  44. Liu QJ, Zhang NC, Liu FS et al (2014) Chin Phys B 23(4):047101

    Google Scholar 

  45. Souadia Z, Bouhemadou A, Khenata R et al (2017) Physica B: Condens Matter 521:204–214

    CAS  Google Scholar 

  46. Kushwaha AK, Khenata R, Bouhemadou A et al (2020) Bull Mater Sci 43:1–7

    Google Scholar 

  47. Güler E, Güler M (2015) Appl Phys A 119:721–726

    Google Scholar 

  48. Asma B, Belkharroubi F, Ibrahim A et al (2021) Emergent Mater 4(6):1769–1783

    CAS  Google Scholar 

  49. Luan S, Dong L, Jia R (2019) J Cryst Growth 505:74–81

    CAS  Google Scholar 

  50. Anam B, Gaston N (2021) ChemPhysChem 22(22):2362–2370

    CAS  PubMed  Google Scholar 

  51. Yaakob MK, Hussin NH, Taib MFM et al (2014) Integr Ferroelectr 155(1):15–22

    CAS  Google Scholar 

  52. Feng J, Xiao B, Chen JC et al (2009) Solid State Commun 149(37–38):1569–1573

    CAS  Google Scholar 

  53. Gajdoš M, Hummer K, Kresse G et al (2006) Phys Rev B 73(4):045112

    Google Scholar 

  54. Gao J, Zeng W, Tang B et al (2021) Mater Sci Semicond Process 121:105447

    CAS  Google Scholar 

  55. Liu QJ, Zhang NC, Liu FS et al (2013) Opt Mater 35(12):2629–2637

    CAS  Google Scholar 

  56. Khireddine A, Bouhemadou A, Alnujaim S et al (2021) Solid State Sci 114:106563

    CAS  Google Scholar 

  57. Bekhti-Siad A, Bettine K, Rai DP et al (2018) Chin J Phys 56(3):870–879

    CAS  Google Scholar 

  58. Hadji S, Bouhemadou A, Haddadi K et al (2020) Physica B: Condens Matter 589:412213

    CAS  Google Scholar 

  59. Sun J, Wang HT, He J et al (2005) Phys Rev B 71(12):125132

    Google Scholar 

  60. Yan C (2021) xidian university

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yan-Ru Wang: Writing—Original Draft, Investigation, Methodology, Data Curation. Zhi-Xin Bai: Writing—Review &; Editing, Conceptualization. Qi-Jun Liu: Visualization, Methodology. Zheng-Tang Liu: Methodology, Software. Cheng-Lu Jiang: Formal analysis, Validation, Writing-Review &; Editing. Supervision.

Corresponding author

Correspondence to Cheng-Lu Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YR., Bai, ZX., Liu, QJ. et al. The calculated electronic and optical properties of β-Ga2O3 based on the first principles. J Mol Model 30, 116 (2024). https://doi.org/10.1007/s00894-024-05907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05907-2

Keywords

Navigation