Skip to main content
Log in

Hydrogen bonding in coquimbite, nominally Fe2(SO4)3·9H2O, and the relationship between coquimbite and paracoquimbite

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Using single-crystal X-ray diffraction at 293, 200 and 100 K, and neutron diffraction at 50 K, we have refined the positions of all atoms, including hydrogen atoms (previously undetermined), in the structure of coquimbite (\( P {\bar 3}1c \), a = 10.924(2)/10.882(2) Å, c = 17.086(3) / 17.154(3) Å, V = 1765.8(3)/1759.2(5) Å3, at 293 / 50 K, respectively). The use of neutron diffraction allowed us to determine precise and accurate hydrogen positions. The O–H distances in coquimbite at 50 K vary between 0.98 and 1.01 Å. In addition to H2O molecules coordinated to the Al3+ and Fe3+ ions, there are rings of six “free” H2O molecules in the coquimbite structure. These rings can be visualized as flattened octahedra with the distance between oxygen and the geometric center of the polyhedron of 2.46 Å. The hydrogen-bonding scheme undergoes no changes with decreasing temperature and the unit cell shrinks linearly from 293 to 100 K. A review of the available data on coquimbite and its “dimorph” paracoquimbite indicates that paracoquimbite may form in phases closer to the nominal composition of Fe2(SO4)3·9H2O. Coquimbite, on the other hand, has a composition approximating Fe1.5Al0.5(SO4)3·9H2O. Hence, even a “simple” sulfate Fe2-x Al x (SO4)3·9H2O may be structurally rather complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ackermann S, Armbruster T, Lazic B, Doyle S, Grevel K-D, Majzlan J (2009) Thermodynamic and crystallographic properties of kornelite (Fe2(SO4)3·∼7.75H2O) and paracoquimbite (Fe2(SO4)3·9H2O). Am Mineral 94:1620–1628

    Article  Google Scholar 

  • Anderson JL, Peterson RC, Swainson IP (2007) The atomic structure and hydrogen bonding of deuterated melanterite, FeSO4·7D2O. Can Mineral 45:457–469

    Article  Google Scholar 

  • Bretsznajder S, Rojkowski Z (1969) X-ray analysis of certain aluminum sulfate hydrates. B Acad Pol Sci-Chim 17:133–137

    Google Scholar 

  • Brown ID (2002) The chemical bond in inorganic chemistry. IUCr Monogr Crystallogr 12

  • Demartin F, Castellano C, Gramaccioli C, Campostrini I (2010) Aluminum/iron substitution, hydrogen bonding and a novel structural type in coquimbite-like minerals. Can Mineral 48:323–333

    Google Scholar 

  • Fang JH, Robinson PD (1970) Crystal structures and mineral chemistry of hydrated ferric sulfates. I. The crystal structure of coquimbite. Am Mineral 55:1534–1540

    Google Scholar 

  • Fischer WE (1997) SINQ—the spallation neutron source, a new research facility at PSI. Physica B 234–236:1202–1208

    Article  Google Scholar 

  • Franks F (eds) (1973) Water: a comprehensive treatise, vol 2. Plenum

  • Gancy AB (1982) Preparation and characterization of the nonahydrate and pentahydrate of aluminum sulfate. Thermochim Acta 54:105–114

    Article  Google Scholar 

  • Giacovazzo C, Menchetti S, Scordari F (1970) The crystal structure of coquimbite. Atti Accad Naz Lin, Serie 8, 49:129–140

    Google Scholar 

  • Giester G, Miletich R (1995) Crystal structure and thermal decomposition of the coquimbite-type compound Fe2(SeO4)3·9H2O. Neues Jb Miner Monat 5:211–223

    Google Scholar 

  • Joeckel RM, Clement BJA, Bates LRVF (2005) Sulfate-mineral crusts from pyrite weathering and acid rock drainage in the Dakota formation and Graneros Shale, Jefferson County, Nebraska. Chem Geol 215:433–452

    Article  Google Scholar 

  • Libowitzky E, Beran A (2004) IR spectroscopic characterization of hydrous species in minerals. EMU Notes Mineral 6:227–279

    Google Scholar 

  • Majzlan J, Kiefer B (2006) An X-ray- and neutron-diffraction study of synthetic ferricopiapite, Fe14/3(SO4)6(OD, OH)2(D2O, H2O)20, and ab initio calculations on the structure of magnesiocopiapite, MgFe4(SO4)6(OH)2(H2O)20. Can Mineral 44:1227–1237

    Article  Google Scholar 

  • Majzlan J, Navrotsky A, McCleskey B, Alpers CN (2006) Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe3(SO4)2(H2O)5. Eur J Mineral 18:175–186

    Article  Google Scholar 

  • Nonius (2001) COLLECT data collection software. Nonius B.V., Delft, The Netherlands

  • Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci USA 96:3455–3462

    Article  Google Scholar 

  • Otwinowski Z, Borek D, Majewski W, Minor W (2003) Multiparametric scaling of diffraction intensities. Acta Crystallogr A59:228–234

    Google Scholar 

  • Qin KZ, Ding KS, Xu YX, Miao Y, Fang TH, Xu XW (2008) Tremendous crystal-paracoquimbite and its polytype coquimbite found for the first time in Hongshan Hs-epithermal Cu–Au deposit, eastern Tianshan, NW-China, and its significance. Acta Petrol Sin 24:1112–1122

    Google Scholar 

  • Rammelsberg CF (1860) Handbuch der Mineralchemie. Verlag von Wilhelm Engelman, Leipzig

    Google Scholar 

  • Robinson PD, Fang JH (1971) Crystal structures and mineral chemistry of hydrated ferric sulphates: II. The crystal structure of paracoquimbite. Am Mineral 56:1567–1572

    Google Scholar 

  • Rose H (1833) Ueber einige in Südamerika vorkommende Eisenoxydsalze. Ann Phys 27:309–319

    Google Scholar 

  • Schefer J, Könnecke M, Murasik A, Czopnik A, Strässle T, Keller P, Schlumpf N (2000) Single-crystal diffraction instrument TriCS at SINQ. Physica B 276–278:168–169

    Article  Google Scholar 

  • Schulz H (1971) Dispersion analysis of single-crystal diffractometer measurements. II. Variance analysis of a set of intensity measurements. Acta Cryst A27:540–544

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Google Scholar 

  • Taylor D, Bassett H (1952) The system Al2(SO4)3–H2SO4–H2O. J Chem Soc 4431–4442

  • Xu W, Tosca NJ, McLennan SM, Parise JB (2009) Humidity-induced phase transitions of ferric sulfate minerals studied by in situ and ex situ X-ray diffraction. Am Mineral 94:1629–1637

    Article  Google Scholar 

  • Young RA (1996) Introduction to the Rietveld method. IUCr Monogr Crystallogr 5:1–38

    Google Scholar 

Download references

Acknowledgments

The neutron diffraction was performed at Trics diffractometer at SINQ, Paul Scherrer Institute (PSI), Villigen, Switzerland. This study was financially supported by the Deutsche Forschungsgemeinschaft, grant MA 3927/2-1. We thank two anonymous reviewers for their constructive criticism and L. Nasdala for the editorial handling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraj Majzlan.

Additional information

Editorial handling: J. G. Raith

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(TXT 18 kb)

ESM 2

(TXT 11 kb)

ESM 3

(TXT 11 kb)

ESM 4

(TXT 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majzlan, J., Ðorđević, T., Kolitsch, U. et al. Hydrogen bonding in coquimbite, nominally Fe2(SO4)3·9H2O, and the relationship between coquimbite and paracoquimbite. Miner Petrol 100, 241–248 (2010). https://doi.org/10.1007/s00710-010-0128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-010-0128-4

Keywords

Navigation