Skip to main content
Log in

Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The plastidic C4 Zea mays NADP-malate dehydrogenase (ZmNADP-MDH), responsible for catalysis of oxaloacetate to malate, was overexpressed in Arabidopsis thaliana to assess its impact on photosynthesis and tolerance to salinity stress. Different transgenic lines were produced having ~3–6-fold higher MDH protein abundance and NADP-MDH enzyme activity than vector control. The overexpressors had similar chlorophyll, carotenoid, and protein content as that of vector control. Their photosynthetic electron transport rates, carbon assimilation rate, and consequently fresh weight and dry weight were almost similar. However, these overexpressors were tolerant to salt stress (150 mM NaCl). In saline environment, the Fv/Fm ratio, yield of photosystem II, chlorophyll, and protein content were higher in ZmNADP-MDH overexpressor than vector control. Under identical conditions, the generation of reactive oxygen species (H2O2) and production of malondialdehyde, a membrane lipid peroxidation product, were lower in overexpressors. In stress environment, the structural distortion of granal organization and swelling of thylakoids were less pronounced in ZmNADP-MDH overexpressing plants as compared to the vector control. Chloroplastic NADP-MDH in consort with cytosolic and mitochondrial NAD-MDH plays an important role in exporting reducing power (NADPH) and exchange of metabolites between different cellular compartments that maintain the redox homeostasis of the cell via malate valve present in chloroplast envelope membrane. The tolerance of NADP-MDH overexpressors to salt stress could be due to operation of an efficient malate valve that plays a major role in maintaining the cellular redox environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

Chl:

Chlorophyll

ETRII:

Electron transport rate of PSII

Fm:

Maximum Chl fluorescence

Fo:

Minimum Chl fluorescence

Fv:

Variable Chl fluorescence (Fm − Fo)

MDA:

Malondialdehyde

MDH:

Malate dehydrogenase

MS medium:

Murashige and Skoog medium

NPQ:

Non-photochemical quenching of Chl a fluorescence

nptII:

Neomycin phosphotransferase (kanamycin resistance gene)

OAA:

Oxaloacetic acid

PEP:

Phosphoenolpyruvate

ROS:

Reactive oxygen species

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

VC:

Vector control

WUE:

Water use efficiency

фPSII:

Effective PSII quantum yield

References

  • Abd El-Moneim D, Contreras R, Silva-Navas J, Gallego FJ, Figueiras AM, Benito C (2015) On the consequences of aluminium stress in rye: repression of two mitochondrial malate dehydrogenase mRNAs. Plant Biol (Stuttg) 17:123–133

    Article  CAS  Google Scholar 

  • Ashton AR, Hatch MD (1983) Regulation of C4 photosynthesis: physical and kinetic properties of active (dithiol) and inactive (disulfide) NADP-malate dehydrogenase from Zea mays. Arch Biochem Biophys 227:406–415

    Article  CAS  PubMed  Google Scholar 

  • Backhausen JE, Kitzmann C, Scheibe R (1994) Competition between electron acceptors in photosynthesis: regulation of the malate valve during CO2 fixation and nitrite reduction. Photosynth Res 42:75–86

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beeler S, Liu HC, Stadler M, Schreier T, Eicke S, Lue WL, Truernit E, Zeeman SC, Chen J, Kötting O (2014) Plastidial NAD-dependent malate dehydrogenase is critical for embryo development and heterotrophic metabolism in Arabidopsis. Plant Physiol 164:1175–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellinger Y, Larher F (1987) Proline accumulation in higher plants: a redox buffer? Plant Physiol (Life Sci Adv) 6:23–27

    Google Scholar 

  • Berkemeyer M, Scheibe R, Ocheretina O (1998) A novel, non-redox-regulated NAD-dependent malate dehydrogenase from chloroplasts of Arabidopsis thaliana L. J Biol Chem 273:27927–27933

    Article  CAS  PubMed  Google Scholar 

  • Berteli F, Corrales E, Guerrero C, Ariza MJ, Pliego F, Valpuesta V (1995) Salt stress increases ferredoxin-dependent glutamate synthase activity and protein level in the leaves of tomato. Physiol Plant 93:259–264

    Article  CAS  Google Scholar 

  • Biswal B, Joshi PN, Raval MK, Biswal UC (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr Sci 101:1–10

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cushman JC (1993) Molecular cloning and expression of chloroplast NADP-malate dehydrogenase during Crassulacean acid metabolism induction by salt stress. Photosynth Res 35:15–27

    Article  CAS  PubMed  Google Scholar 

  • Dalal VK, Tripathy BC (2012) Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell Environ 35:1685–1703

    Article  CAS  PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Demmig B, Winter K, Kruger A, Czygan FC (1987) Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84:218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards GE, Nakamoto H, Burnell JN, Hatch MD (1985) Pyruvate, Pi dikinase and NADP-malate dehydrogenase in C4 photosynthesis: properties and mechanism of light/dark regulation. Annu Rev Plant Physiol 36:255–286

    Article  CAS  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O'Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta - Gen Subj 990:87–92

    Article  CAS  Google Scholar 

  • Gietl C (1992) Malate dehydrogenase isoenzymes: cellular locations and role in the flow of metabolites between the cytoplasm and cell organelles. Biochim Biophys Acta 1100:217–234

    Article  CAS  PubMed  Google Scholar 

  • Gietl C, Hock B (1982) Organelle-bound malate dehydrogenase isoenzymes are synthesized as higher molecular weight precursors. Plant Physiol 70:483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindjee E (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    Article  CAS  Google Scholar 

  • Hara S, Motohashi K, Arisaka F, Romano PGN, Hosoya-Matsuda N, Kikuchi N, Fusada N et al (2006) Thioredoxin-h1 reduces and reactivates the oxidized cytosolic malate dehydrogenase dimer in higher plants. J Biol Chem 281:32065–32071

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J Exp Bot 50:413–434

    CAS  Google Scholar 

  • Hashida SN, Takahashi H, Uchimiya H (2009) The role of NAD biosynthesis in plant development and stress response. Ann Bot 103:819–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatch MD, Slack CR (1969) NADP-specific malate dehydrogenase and glycerate kinase in leaves and evidence for their location in chloroplasts. Biochem Biophys Res Commun 34:589–593

    Article  CAS  PubMed  Google Scholar 

  • Hebbelmann I, Selinski J, Wehmeyer C, Goss T, Voss I, Mulo P, Kangasjärvi S, Aro EM, Oelze ML, Dietz KJ, Nunes-Nesi A, Do PT, Fernie AR, Talla SK, Raghavendra AS, Linke V, Scheibe R (2012) Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase. J Exp Bot 63:1445–1459

    Article  CAS  PubMed  Google Scholar 

  • Heyno E, Innocenti G, Lemaire SD, Issakidis-Bourguet E, Krieger-Liszkay A (2014) Putative role of the malate valve enzyme NADP–malate dehydrogenase in H2O2 signalling in Arabidopsis. Philos. Trans R Soc Lond B Biol Sci 369:20130228

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prang RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 4:604–611

    Article  Google Scholar 

  • Jackson RM, Sessions RB, Holbrook JJ (1992) A prediction of the three-dimensional structure of maize NADP+-dependent malate dehydrogenase which explains aspects of light-dependent regulation unique to plant enzymes. J Comput Aided Mol Des 6:1–18

    Article  CAS  PubMed  Google Scholar 

  • Jiang CD, Wang X, Gao HY, Lei S, Chow WS (2011) Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum. Plant Physiol 155:1416–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jilani A, Kar S, Bose S, Tripathy BC (1996) Regulation of the carotenoid content and chloroplast development by levulinic acid. Physiol Plant 96:139–145

    Article  CAS  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  CAS  PubMed  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137A

    Google Scholar 

  • Kandoi D, Mohanty S, Govindjee TBC (2016) Towards efficient photosynthesis: overexpression of Zea mays phosphenolpyruvate carboxylase in Arabidopsis thaliana. Photosynth Res 130:47–72

    Article  CAS  PubMed  Google Scholar 

  • Kataria S, Guruprasad KN, Ahuja S, Singh B (2013) Enhancement of growth, photosynthetic performance and yield by exclusion of ambient UV components in C3 and C4 plants. J Photochem Photobiol B Biol 127:140–152

    Article  CAS  Google Scholar 

  • Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8:1323–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar RG, Shah K, Dubey RS (2000) Salinity induced behavioural changes in malate dehydrogenase and glutamate dehydrogenase activities in rice seedlings of differing salt tolerance. Plant Sci 156:23–34

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW (1995) The effects of water deficit on photosynthesis. In: Smirnoff N (Ed) Environment and plant metabolism: flexibility and acclimation. BIOS Scientific Publishers, pp. 129–160

  • Lance C, Rustin P (1984) The central role of malate in plant metabolism. Physiol végétale 22:625–641

    CAS  Google Scholar 

  • Lemaire M, Issakidis E, Ruelland E, Decottignies P, Miginiac-Maslow M (1996) An active-site cysteine of sorghum leaf NADP-malate dehydrogenase studied by site-directed mutagenesis. FEBS Lett 382:137–140

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ye N, Liu R, Chen M, Zhang J (2010) H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J Exp Bot 61:2979–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madan S, Nainawatee HS, Jain RK, Chowdhury JB (1995) Proline and proline metabolising enzymes in in-vitro selected NaCl-tolerant Brassica juncea L. under salt stress. Ann Bot 76:51–57

    Article  CAS  Google Scholar 

  • Metzler MC, Rothermel BA, Nelson T (1989) Maize NADP malate dehydrogenase: cDNA cloning, sequence and mRNA characterization. Plant Mol Biol 12:713–722

    Article  CAS  PubMed  Google Scholar 

  • Miller SS, Driscoll BT, Gregerson RG, Gantt JS, Vance CP (1998) Alfalfa malate dehydrogenase (MDH): molecular cloning and characterization of five different forms reveals a unique nodule-enhanced MDH. Plant J 15:173–184

    Article  CAS  PubMed  Google Scholar 

  • Millar AH, Sweetlove LJ, Giege P, Leaver CJ (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol 127:1711–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty S, Grimm B, Tripathy BC (2006) Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224:692–699

    Article  CAS  PubMed  Google Scholar 

  • Munday JC, Govindjee (1969a) Light-induced changes in the fluorescence yield of chlorophyll a in vivo: III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9(1):1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munday JC, Govindjee (1969b) Light-induced changes in the fluorescence yield of chlorophyll a in vivo: IV. The effect of preillumination on the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9(1):22–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(239–250):2002

    Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44:806–811

    Article  Google Scholar 

  • Nickrent DL (1994) From field to film: rapid sequencing methods for field-collected plant species. BioTechniques 16(3):470–475

    CAS  PubMed  Google Scholar 

  • Pastore D, Pede SD, Passarella S (2003) Isolated durum wheat and potato cell mitochondria oxidize externally added NADH mostly via the malate/oxaloacetate shuttle with a rate that depends on the carrier-mediated transport. Plant Physiol 133:2029–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattanayak GK, Biswal AK, Reddy VS, Tripathy BC (2005) Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochem Biophys Res Commun 326:466–471

    Article  CAS  PubMed  Google Scholar 

  • Petrusa LM, Winicov I (1997) Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem 35:303–310

    CAS  Google Scholar 

  • Pracharoenwattana I, Cornah JE, Smith SM (2007) Arabidopsis peroxisomal malate dehydrogenase functions in β-oxidation but not in the glyoxylate cycle. Plant J 50:381–390

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553

    Article  CAS  PubMed  Google Scholar 

  • Rebeille F, Hatch MD (1986) Regulation of NADP-malate dehydrogenase in C4 plants: effect of varying NADPH to NADP ratios and thioredoxin state on enzyme activity in reconstituted systems. Arch Biochem Biophys 249:164–170

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Weber APM (2006) Plant peroxisomes respire in the light: some gaps of the photorespiratory C2 cycle have become filled—others remain. Biochim Biophys Acta 1763:1496–1510

    Article  CAS  PubMed  Google Scholar 

  • Rhodes D, Handa S, Bressan R (1986) Metabolic changes associated with adaptation of plant cell to water stress. Plant Physiol 82:890–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Scheibe R (1987) NADP+-malate dehydrogenase in C3-plants: regulation and role of a light-activated enzyme. Physiol Plant 71:393–400

    Article  CAS  Google Scholar 

  • Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120:21–26

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 279–319

    Chapter  Google Scholar 

  • Schreiber U, Armond PA (1978) Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochim Biophys Acta 502:138–151

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze E-D, Caldwell M (eds) Ecophysiology of photosynthesis, Springer Study edn, vol 100. Springer, Berlin, pp 49–70

    Chapter  Google Scholar 

  • Schulze J, Tesfaye M, Litjens RHMG, Bucciarelli B, Trepp G, Miller S, Samac D, Allan D, Vance CP (2002) Malate plays a central role in plant nutrition. Plant Soil 247:133–139

    Article  CAS  Google Scholar 

  • Selinski J, Konig N, Wellmeyer B, Hanke GT, Linke V, Neuhaus HE, Scheibe R (2014) The plastid-localized NAD-dependent malate dehydrogenase is crucial for energy homeostasis in developing Arabidopsis thaliana seeds. Mol Plant 7:170–186

    Article  CAS  PubMed  Google Scholar 

  • Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  Google Scholar 

  • Taniguchi M, Miyake H (2012) Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism. Curr Opin Plant Biol 15:252–260

    Article  CAS  PubMed  Google Scholar 

  • Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber (Cucumis sativus L) and wheat (Triticum aestivum L). Plant Physiol 117:851–858

    Article  CAS  Google Scholar 

  • Tomaz T, Bagard M, Pracharoenwattana I, Linden P, Lee CP, Carroll AJ, Ströher E, Smith SM, Gardeström P, Millar AH (2010) Mitochondrial malate dehydrogenase lowers leaf respiration and alters photorespiration and plant growth in Arabidopsis. Plant Physiol 154:1143–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trípodi KJ, Podestá F (2003) Purification and characterization of an NAD-dependent malate dehydrogenase from leaves of the crassulacean acid metabolism plant Aptenia cordifolia. Plant Physiol Biochem 41:97–105

    Article  Google Scholar 

  • Tsuchida H, Tamai T, Fukayama H, Agarie S, Nomura M, Onodera H, Ono K, Nishizawa Y et al (2001) High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell Physiol 42:138–145

    Article  CAS  PubMed  Google Scholar 

  • Turan S, Tripathy BC (2015) Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiol Plant 153:477–491

    Article  CAS  PubMed  Google Scholar 

  • Turan S, Tripathy BC (2013) Salt and genotype impact on antioxidative enzymes and lipid peroxidation in two rice cultivars during de-etiolation. Protoplasma 250:209–222

    Article  CAS  PubMed  Google Scholar 

  • Voss I, Koelmann M, Wojtera J, Holtgrefe S, Kitzmann C, Backhausen JE, Scheibe R (2008) Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana. Physiol Plant 133:584–598

    Article  CAS  PubMed  Google Scholar 

  • Wang Q-J, Sun H, Dong Q-L, Sun T-Y, Jin Z-X, Hao Y-J, Yao Y-X (2016) The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotech J 14:1986–1997

    Article  CAS  Google Scholar 

  • Yao YX, Li M, Zhai H, You CX, Hao YJ (2011) Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis. J Plant Physiol 168:474–480

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchishinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for delta(1)-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic-stress. Plant J 7:751–760

    Article  CAS  PubMed  Google Scholar 

  • Zhang BY, Hou ZJ, Wang GC, Peng G (2015) Identification, characterization and quantitative analysis of NAD-malate dehydrogenase from the marine rhodophyte Pyropia haitanensis. Bot Mar 58:285–293

    Article  CAS  Google Scholar 

  • Zhang LT, Zhang ZS, Gao HY, Xue ZC, Yang C, Meng XL, Meng QW (2011) Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K-1 leaves. Physiol Plant 143:396–407

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Agriculture Innovation Project (grant no. PAC-SLS-BCT-NAIP-09080312-371) from the Indian Council of Agricultural Research and J C Bose Fellowship from the Department of Science and Technology (DST) to the PI (BCT). The financial assistance from the University Grants Commission (UGC-NRC), DST-PURSE, and DST-FIST programs sanctioned to the School of Life Sciences, Jawaharlal Nehru University, New Delhi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baishnab C. Tripathy.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandoi, D., Mohanty, S. & Tripathy, B.C. Overexpression of plastidic maize NADP-malate dehydrogenase (ZmNADP-MDH) in Arabidopsis thaliana confers tolerance to salt stress. Protoplasma 255, 547–563 (2018). https://doi.org/10.1007/s00709-017-1168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1168-y

Keywords

Navigation