Skip to main content

Chlorophyll Fluorescence as a Nonintrusive Indicator for Rapid Assessment of In Vivo Photosynthesis

  • Chapter
Ecophysiology of Photosynthesis

Part of the book series: Springer Study Edition ((SSE,volume 100))

Abstract

In the past, ecophysiologically oriented photosynthesis research has been governed by gas-exchange measurements, mainly involving sophisticated (and costly) systems for simultaneous detection of CO2 uptake and H2O evaporation (see, e.g., Field et al. 1989). With the help of these methods, fundamental knowledge on in situ photosynthesis has been gained. Only recently, progress has been made in the development of alternative practical methods for nonintrusive assessment of in vivo photosynthesis which have the potential of not only evaluating overall quantum yield and capacity, but also allowing insights into the biochemical partial reactions and the partitioning of excitation energy (see, e.g., Snel and van Kooten 1990). As a consequence, photosynthesis research at the level of regulatory processes has been greatly stimulated, leading to important new concepts (see reviews by Foyer et al. 1990; Demmig-Adams 1990; Melis 1991; Allen 1992). In particular, chlorophyll fluorescence has evolved as a very useful and informative indicator for photosynthetic electron transport in intact leaves, algae, and isolated chloroplasts (reviews by Briantais et al. 1986; Renger and Schreiber 1986; Schreiber and Bilger 1987, 1992; Krause and Weis 1991; Karukstis 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098: 275–335

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI, Chain RK (1975) Regulation of ferredoxin-catalyzed photosynthetic phosphorylations. Proc Natl Acad Sci USA 72: 4961–4965

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI, Chain RK (1977) Role of oxygen in ferredoxin-catalyzed cyclic phosphorylations. FEBS Lett 82: 297–302

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Badger M (1984) Photoreduction of 18O2 and 18H2O2 with a concomitant evolution of 16O2 in intact spinach chloroplasts. Evidence for scavenging of hydrogen peroxide by peroxidase. Plant Cell Physiol 25: 1169–1179

    CAS  Google Scholar 

  • Asada H, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibiton. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Asada K, Neubauer C, Heber U, Schreiber U (1990) Methyl viologen-dependent cyclic electron transport in spinach chloroplasts in the absence of oxygen. Plant Cell Physiol 31: 557–564

    CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25: 173–186

    Article  CAS  Google Scholar 

  • Bilger W, Schreiber U (1986) Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosynth Res 10:303–308

    Article  CAS  Google Scholar 

  • Bilger W, Schreiber U, Lange OL (1987) Chlorophyll fluorescence as an indicator of heat-induced limitation of photosynthesis in Arbutus unedo. In: Tenhunen J, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress. Springer, Berlin Heidelberg New York, pp 391–399

    Chapter  Google Scholar 

  • Bilger W, Heber U, Schreiber U (1988) Kinetic relationship between energy-dependent fluorescence quenching, light scattering, chlorophyll luminescence and proton pumping in intact leaves. Z Naturforsch 43cc: 377–887

    Google Scholar 

  • Björkman O (1987) Low-temperature chlorophyll fluorescence in leaves and its relationship to photon yield of photosynthesis in photoinhibition. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibiton. Elsevier, Amsterdam, pp 123–144

    Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2-evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489–504

    Article  Google Scholar 

  • Bradbury M, Baker NR (1981) Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystem I and II. Biochim Biophys Acta 63: 542–551

    Google Scholar 

  • Briantais JM, Vernotte C, Krause GH, Weis E (1986) Chlorophyll a fluorescence of higher plants: chloroplasts and leaves. In: Govindjee, Amesz J, Fork CD (eds) Light emission by plants and bacteria. Academic Press, New York, pp 539–583

    Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29: 345–378

    Article  CAS  Google Scholar 

  • Delosme R (1967) Etude de 1’ induction de fluorescence des algues vertes et des chloroplasts at début d’une illumination intense. Biochim Biophys Acta 143: 108–128

    Article  PubMed  CAS  Google Scholar 

  • Demmig B, Winter K (1988) Light response of CO2-assimilation, reduction state of Q and radiationless energy dissipation in intact leaves. Aust J Plant Physiol 15: 151–162

    Article  CAS  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020: 1–24

    Article  CAS  Google Scholar 

  • Dietz KJ, Schreiber U, Heber U (1985) The relationship between the redox state of QA and photosynthesis in leaves at various carbon dioxide, oxygen and light regimes. Planta 166: 219–226

    Article  CAS  Google Scholar 

  • Duysens LNM, Sweers HE (1963) Mechanism of the two photochemical reactions in algae as studied by means of fluorescence. In: Studies on microalgae and photosynthetic bacteria. University of Tokyo Press, Tokyo, pp 353–372

    Google Scholar 

  • Field CB, Ball JT, Berry JA (1989) Photosynthesis: principles and field techniques. In: Pearcy RW, Ehleringer J, Mooney HA, Rundel PW (eds) Plant physiological ecology. Chapman and Hall, London, pp 209–253

    Chapter  Google Scholar 

  • Foyer C, Furbank R, Harbinson J, Horton P (1990) The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynth Res 25: 83–100

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker N (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990: 87–92

    Article  CAS  Google Scholar 

  • Govindjee (1990) Photosystem II heterogeneity: the acceptor side. Photosynth Res 25: 151–160

    Article  CAS  Google Scholar 

  • Harbinson J, Genty B, Baker NR (1990) The relationship between CO2 assimilation and electron transport in leaves. Photosynth Res 25: 213–224

    Article  CAS  Google Scholar 

  • Heber U (1969) Conformational changes of chloroplasts induced by illumination of leaves in vivo. Biochim Biophys Acta 180: 302–319

    Article  PubMed  CAS  Google Scholar 

  • Heber U, Neimanis S, Setlikova E, Schreiber U (1990) Why is photorespiration a necessity for leaf survival under water stress? In: Sinha SK, Sane PV, Agrawal PK, Bhargave SC (eds) Proc of the Int Congress of Plant Physiol. Soc Plant Physiol Biochem, New Delhi, pp 581–592

    Google Scholar 

  • Joliot P, Joliot A (1964) Etude cinétique de la reaction photochimique libérant 1’ oxygène au cours de la photosynthèse. CR Acad Sci Paris 258: 4622–4625

    CAS  Google Scholar 

  • Karukstis KK (1991) Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 769–795

    Google Scholar 

  • Kautsky H, Franck U (1943) Chlorophyllfluoreszenz und Kohlensäureassimilation. Biochem Z 315: 139–232

    CAS  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlenstoffassimilation. Naturwissenschaften 19: 964

    Article  CAS  Google Scholar 

  • Kautsky H, Appel W, Amann H (1960) Die Fluoreszenzkurve und die Photochemie der Pflanze. Biochem Z 332: 277–292

    PubMed  CAS  Google Scholar 

  • Keuper HJK, Sauer K (1989) Effect of photosystem II reaction center closure on nanosecond fluorescence relaxation kinetics. Photosynth Res 20: 85–103

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol 42: 313–349

    Article  CAS  Google Scholar 

  • Krall JP, Edwards GE, Ku MSB (1991) Quantum yield of photosystem II and efficiency of CO2-fixation in Flaveria (Asteraceae) species at varying light and CO2. Aust J Plant Physiol 18: 369–383

    Article  CAS  Google Scholar 

  • Krieger A (1992) pH-abhängige Regulation von Photosystem II: Einfluß von Calcium. Thesis, Heinrich-Heine Universität, Düsseldorf

    Google Scholar 

  • Lavorel J, Etienne AL (1977) In vivo chlorophyll fluorescence. In: Barber J (ed) Primary processes of photosynthesis. Elsevier, Amsterdam, pp 203–268

    Google Scholar 

  • Melis T (1985) Functional properties of photosystem IIß in spinach chloroplasts. Biochim Biophys Acta 808: 334–342

    Article  CAS  Google Scholar 

  • Melis T (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058: 87–106

    Article  CAS  Google Scholar 

  • Melis T, Schreiber U (1979) The kinetic relationship between the C550 absorbance change, the reduction of Q (A320) and the variable fluorescence yield change in chloroplasts at room temperature. Biochim Biophys Acta 547: 47–57

    Article  PubMed  CAS  Google Scholar 

  • Mi H, Endo T, Schreiber U, Ogawa T, Asada K (1992) Electron donation from cyclic and respiratory flows to photosynthetic intersystem chain is mediated by pyridine nucleotide dehydrogenase in the cyanobacterium Synechocystis PCC 6803. Plant Cell Physiol 33: 1233–1237

    CAS  Google Scholar 

  • Moss DA, Bendall DS (1984) Cyclic electron transport in chloroplasts. The Q-cycle and the site of action of antimycin. Biochim Biophys Acta 767: 389–395

    Article  CAS  Google Scholar 

  • Munday JC, Govindjee (1969) Light-induced changes in the fluorescence yield of chlorophyll a in vivo point III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9: 1–21

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Nishimura M, Takamiya A (1966) Fluorescence of chlorophyll in photosynthetic systems. II. Induction of fluorescence in isolated spinach chloroplasts. Biochim Biophys Acta 120: 23–33

    Article  PubMed  CAS  Google Scholar 

  • Neubauer C, Schreiber U (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination. I. Saturation characteristics and partial control by the photosystem II acceptor side. Z Naturforsch 42: 1246–1254

    CAS  Google Scholar 

  • Neubauer C, Schreiber U (1988) Induction of photochemical and nonphotochemical quenching of chlorophyll fluorescence by low concentrations of m-dinitrobenzene. Photosynth Res 15: 233–246

    Article  CAS  Google Scholar 

  • Neubauer C, Schreiber U (1989a) Photochemical and non-photochemical quenching of chlorophyll fluorescence induced by hydrogen peroxide. Z Naturforsch 44c: 262–270

    Google Scholar 

  • Neubauer C, Schreiber U (1989b) Dithionite-induced fluorescence quenching does not reflect reductive activation in spinach chloroplasts. Bot Acta 102: 314–318

    CAS  Google Scholar 

  • Reising H, Schreiber U (1992) Pulse-modulated photoacoustic measurements reveal strong gas-uptake component at high CO2-concentrations. Photosynth Res 31: 227–238

    Article  CAS  Google Scholar 

  • Renger G, Schreiber U (1986) Practical applications of fluorometric methods to algae and higher plant research. In: Govindjee, Amesz J, Fork CD (eds) Light emission by plants and bacteria. Academic Press, New York, pp 587–619

    Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth Res 9: 261–272

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W (1987) Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WD (eds) Plant response to stress. Springer, Berlin Heidelberg New York, pp 27–53

    Chapter  Google Scholar 

  • Schreiber U, Bilger W (1992) Progress in chlorophyll fluorescence research: major developments during the last years in retrospect. Prog Bot 54: 151–173

    Google Scholar 

  • Schreiber U, Neubauer C (1987) The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination. II. Partial control by the photosystem II donor side and possible ways of interpretation. Z Naturforsch 42: 1255–1264

    CAS  Google Scholar 

  • Schreiber U, Neubauer C (1989) Correlation between donor-side-dependent quenching and stimulation of charge recombination at PS II. FEBS Lett 258: 339–342

    Article  CAS  Google Scholar 

  • Schreiber U, Neubauer C (1990) O2-dependent electron flow, membrane energization and the mechanism of non-photochemical quenching of chlorophyll fluorescence. Photosynth Res 25: 279–293

    Article  CAS  Google Scholar 

  • Schreiber U, Bauer R, Franck UF (1971) Chlorophyll fluorescence induction in green plants at oxyten deficiency. In: Forti G, Avron M, Melandri A (eds) Proc 2nd Int Congr Photosynth. Junk, The Hague, pp 169–179

    Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10: 51–62

    Article  CAS  Google Scholar 

  • Schreiber U, Reising H, Neubauer C (1991) Contrasting pH-optima of light-driven O2− and H2O2-reduction in spinach chloroplasts as measured via chlorophyll fluorescence. Z Naturforsch 46c: 635–643

    Google Scholar 

  • Seaton GGR, Walker DA (1990) Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation. Proc R Soc Lond B 242: 29–35

    Article  Google Scholar 

  • Sharkey TD, Berry JA, Sage RF (1988) Regulation of photosynthetic electron transport in Phaseolus vulgaris L., as determined by room-temperature chlorophyll a fluorescence. Planta 176: 415–424

    Article  CAS  Google Scholar 

  • Snel JFH, van Kooten O (eds) (1990) The use of chlorophyll fluorescence and other noninvasive spectroscopic techniques in plant stress physiology. Photosynth Res (Spec Iss) 25: 146–332

    Google Scholar 

  • Snel JFH, van Ieperen W, Vredenberg WJ (1990) Complete suppression of oxygen evolution in open PS 2 centers by non-photochemical fluorescence quenching? In: Baltscheffsky M (ed) Current research in photosynthesis, vol II. Kluwer, Dordrecht, pp 911–914

    Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25: 147–150

    Article  Google Scholar 

  • Velthuys BR, Amesz J (1974) Charge accumulation at the reducing side of system 2 of photosynthesis. Biochim Biophys Acta 333: 85–94

    Article  PubMed  CAS  Google Scholar 

  • Walker DA (1992) Excited leaves. New Phytol 121: 325–345

    Article  CAS  Google Scholar 

  • Weis E, Berry JA (1987) Quantum efficiency of photosystem II in relation to “energy”-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 894: 198–208

    Article  CAS  Google Scholar 

  • Weis E, Lechtenberg D (1989) Fluorescence analysis during steady state photosynthesis. Philos Trans R Soc Lond Ser B 323: 253–268

    Article  CAS  Google Scholar 

  • Weis E, Lechtenberg D, Krieger A (1990) Physiological control of primary photochemical energy conversion in higher plants. In: Baltscheffsky M (ed) Current research in photosynthesis, vol IV. Kluwer, Dordrecht, pp 307–312

    Google Scholar 

  • Wu J, Neimanis S, Heber U (1991) Photorespiration is more effective than the Mehler reaction in protecting the photosynthetic apparatus against photoinhibition. Bot Acta 104: 283–291

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schreiber, U., Bilger, W., Neubauer, C. (1995). Chlorophyll Fluorescence as a Nonintrusive Indicator for Rapid Assessment of In Vivo Photosynthesis. In: Schulze, ED., Caldwell, M.M. (eds) Ecophysiology of Photosynthesis. Springer Study Edition, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79354-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79354-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58571-8

  • Online ISBN: 978-3-642-79354-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics