Skip to main content
Log in

Screening and identification of phytotoxic volatile compounds in medicinal plants and characterizations of a selected compound, eucarvone

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Screening and identification of phytotoxic volatile compounds were performed using 71 medicinal plant species to find new natural compounds, and the characterization of the promising compound was investigated to understand the mode of action. The volatile compounds from Asarum sieboldii Miq. showed the strongest inhibitory effect on the hypocotyl growth of lettuce seedlings (Lactuca sativa L.cv. Great Lakes 366), followed by those from Schizonepeta tenuifolia Briquet and Zanthoxylum piperitum (L.) DC.. Gas chromatography–mass spectrometry (GC/MS) identified four volatile compounds, α-pinene (2,6,6-trimethylbicyclo[3.1.1]hept-2-ene), β-pinene (6,6-dimethyl-2-methylenebicyclo[3.1.1]heptane), 3-carene (3,7,7-trimethylbicyclo[4.1.0]hept-3-ene), and eucarvone (2,6,6-trimethy-2,4-cycloheptadien-1-one), from A. sieboldii, and three volatile compounds, limonene (1-methyl-4-(1-methylethenyl)-cyclohexene), menthone (5-methyl-2-(propan-2-yl)cyclohexan-1-one), and pulegone (5-methyl-2-propan-2-ylidenecyclohexan-1-one), from S. tenuifolia. Among these volatile compounds, eucarvone, menthone, and pulegone exhibited strong inhibitory effects on both the root and shoot growth of lettuce seedlings. Eucarvone-induced growth inhibition was species-selective. Cell death, the generation of reactive oxygen species (ROS), and lipid peroxidation were induced in susceptible finger millet seedlings by eucarvone treatment, whereas this compound (≤158 μM) did not cause the increase of lipid peroxidation and ROS production in tolerant maize. The results of the present study show that eucarvone can have strong phytotoxic activity, which may be due to ROS overproduction and subsequent oxidative damage in finger millet seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DHE:

Dihydroethidium

DMSO:

Dimethyl sulfoxide

DW:

Distilled water

FDA:

Fluorescein diacetate

FID:

Flame ionization detector

GC:

Gas chromatography

GC-MS:

Gas chromatography–mass spectrometry

GR50 :

The dose required to cause a 50 % reduction in plant growth

OH·:

Hydroxyl radical

PI:

Propidium iodide

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

References

  • Alsaadawi IS, Arif MB, Alrubeana AJ (1985) Allelopathic effects of Citrus aurantim L. II. Isolation, characterization, and biological activities of phytotoxins. J Chem Ecol 11:1527–1534

    Article  CAS  PubMed  Google Scholar 

  • Asplund RO (1968) Monoterpenes: relationship between structure and inhibition of germination. Phytochemistry 7:1995–1997

    Article  CAS  Google Scholar 

  • Chowhan N, Singh HP, Batish DR, Kaur S, Ahuja N, Kohli RK (2013) β-Pinene inhibited germination and early growth involves membrane peroxidation. Protoplasma 250:691–700

    Article  CAS  PubMed  Google Scholar 

  • Coleman WK, Lonergan G, Silk P (2001) Potato sprout growth suppression by menthone and neomenthol, volatile oil components of Minthostachys, Satureja, Bystropogon, and Mentha species. Am J Potato Res 78:345–354

    Article  CAS  Google Scholar 

  • Dayan FE, Romagni JG, Tellez MR, Rimando AM, Duke SO (1999) Managing weeds with natural products. Pestic Outlook 5:185–188

    Google Scholar 

  • Dayan FE, Romagni JG, Duke SO (2000) Investigating the mode of action of natural phytotoxins. J Chem Ecol 26:2079–2094

    Article  CAS  Google Scholar 

  • Duke SO, Abbas HK, Amagasa T, Tanaka T (1996) Phytotoxins of microbial origin with potential for use as herbicides. In: Copping LG (ed) Crop Protection Agents from Nature, Natural Products and Analogues. Royal Society of Chemistry, Cambridge, pp 82–113

    Google Scholar 

  • Duke SO, Dayan FE, Romagni JG, Rimando AM (2000a) Natural products as sources of herbicides: current status and future trends. Weed Res 40:99–111

    Article  CAS  Google Scholar 

  • Duke SO, Romagni JG, Dayan FE (2000b) Natural products as sources for new mechanisms of herbicidal action. Crop Prot 19:583–589

    Article  CAS  Google Scholar 

  • Fitzhenry A (2005) d-Limonene herbicide. Granted Innovation Patent (Aust.), AU 2005100476 A4 20050818, Aug 18, 2005

  • Forney LJ, Reddy CA, Tien M, Aust SD (1982) The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J Biol Chem 257:11455–11462

    CAS  PubMed  Google Scholar 

  • Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332:507–515

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii Y, Shibuya T, Yasuda T (1990) Survey of Japanese weed and crops for the detection of water-extractable allelopathic chemicals using Richards’ function fitted to lettuce germination test. Weed Res, Jpn 35:362–370 (in Japanese with English summary)

    Google Scholar 

  • Fujii Y, Parvez SS, Parvez MM, Ohmae Y, Iida O (2003) Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biol Manag 3:233–241

    Article  Google Scholar 

  • Fujii Y, Matsuyama M, Hiradate S, Shimozawa H (2005) Dish pack method: a new bioassay for volatile allelopathy, Proc 4th World Cong Allelopathy. 493–497

  • Gaff DF, Okong'o-Ogola O (1971) The use of non-permeating pigments for testing the survival of cells. J Exp Bot 22:756–758

    Article  Google Scholar 

  • Haig T (2008) Allelochemicals in plants. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Springer, New York, pp 63–104

    Chapter  Google Scholar 

  • Halligan JP (1975) Toxic terpenes from Artemisia californica. Ecology 56:999–1003

    Article  CAS  Google Scholar 

  • Han CM, Pan KW, Wu N, Wang JC, Li W (2008) Allelopathic effect of ginger on seed germination and seedling growth of soybean and chive. Sci Hort 116:330–336

    Article  Google Scholar 

  • Islam AKMM, Kato-Noguchi H (2013) Plant growth inhibitory activity of medicinal plant Hyptis suaveolens: could allelopathy be a cause? Emir J Food Agric 25:692–701

    Google Scholar 

  • Kim J, Park IK (2008) Fumigant toxicity of Korean medicinal plant essential oils and components from Asiasarum sieboldi root against Sitophilus oryzae L. Flavour Frag J 23:79–83

    Article  CAS  Google Scholar 

  • Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280

    Article  CAS  PubMed  Google Scholar 

  • Maffei M, Sacco T (1987) Chemical and morphometrical comparison between two peppermint notomorphs. Planta Med 2:214–216

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Muller WH, Muller CH (1964) Volatile growth inhibitors produced by Salvia species. Bull Torrey Bot Club 91:327–330

    Article  CAS  Google Scholar 

  • Muller CH, Muller WH, Haines BL (1964) Volatile growth inhibitors produced by aromatic shrubs. Science 143:471–473

    Article  CAS  PubMed  Google Scholar 

  • Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31:1187–1203

    Article  CAS  PubMed  Google Scholar 

  • Oumzil H, Ghoulami S, Rhajaoui M, Ilidrissi A, Fkih-Tetouani S, Faid M, Benjouad A (2002) Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother Res 16:727–731

    Article  CAS  PubMed  Google Scholar 

  • Pan H, Ouyang T (2011) Comparative analysis of volatile oil extracted from Asarum sieboldii Miq. by distillation and ultrasound-assisted extraction. Shipin Kexue 32:190–193 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Pan J, Zhu M, Chen H (2001) Aluminum-induced cell death in root-tip cells of barley. Environ Exp Bot 46:71–79

    Article  CAS  PubMed  Google Scholar 

  • Park IK, Kim LS, Choi IH, Lee YS, Shin SC (2006) Fumigant activity of plant essential oils and components from Schizonepeta tenuifolia against Lycoriella ingenua (Diptera: Sciaridae). J Econ Entomol 99:1717–1721

    Article  CAS  PubMed  Google Scholar 

  • Pompella A, Maellaro E, Casini AF, Comporti M (1987) Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice. Am J Pathol 129:295–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romagni JG, Allen SN, Dayan FE (2000) Allelopathic effects of volatile cineoles on two weedy plant species. J Chem Ecol 26:303–313

    Article  CAS  Google Scholar 

  • Schweikert C, Liszkay A, Schopfer P (2000) Scission of polysaccharides and peroxidase-generated hydroxyl radicals. Phytochemistry 53:565–570

    Article  CAS  PubMed  Google Scholar 

  • Sekine T, Sugano M, Majid A, Fujii Y (2007) Antifungal effects of volatile compounds from Black Zira (Bunium persicum) and other spices and herbs. J Chem Ecol 33:2123–2132

    Article  CAS  PubMed  Google Scholar 

  • Singh HP, Batish DR, Kaur S, Ramezani H, Kohli RK (2002) Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Ann Appl Biol 141:111–116

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kaur S, Arora K, Kohli RK (2006) α-Pinene inhibits growth and induces oxidative stress in roots. Ann Bot 98:1261–1269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh HP, Kaur S, Mittal S, Batish DR, Kohli RK (2009) Essential oil of Artemisia scoparia inhibits plant growth by generating reactive oxygen species and causing oxidative damage. J Chem Ecol 35:154–162

    Article  CAS  PubMed  Google Scholar 

  • Sodaeizadeh H, Rafieiolhossaini M, Havlik J, Damme PV (2009) Allelopathic activity of different plant parts of Peganum harmala L. and identification of their growth inhibitors substances. Plant Growth Regul 59:227–236

    Article  CAS  Google Scholar 

  • Sunohara Y, Matsumoto H (2008) Quinclorac-induced cell death is accompanied by generation of reactive oxygen species in maize root tissue. Phytochemistry 69:2312–2319

    Article  CAS  PubMed  Google Scholar 

  • Sunohara Y, Shirai S, Yamazaki H, Matsumoto H (2011) Involvement of antioxidant capacity in quinclorac tolerance in Eleusine indica. Environ Exp Bot 74:74–81

    Article  CAS  Google Scholar 

  • Tamás L, Šimonovičová M, Huttová J, Mistrík I (2004) Aluminium stimulated hydrogen peroxide production of germinating barley seeds. Environ Exp Bot 51:281–288

    Article  Google Scholar 

  • Umebayashi Y, Miyamoto Y, Wakita M, Kobayashi A, Nishisaka T (2003) Elevation of plasma membrane permeability on laser irradiation of extracellular latex particles. J Biochem 134:219–224

    Article  CAS  PubMed  Google Scholar 

  • Vaughn SF, Spencer GF (1993) Volatile monoterpenes as potential parent structures for new herbicides. Weed Sci 41:114–119

    CAS  Google Scholar 

  • Vaughn SF, Spencer GF (1996) Synthesis and herbicidal activity of modified monoterpenes structurally similar to cimmethylin. Weed Sci 44:7–11

    CAS  Google Scholar 

  • Vokou D, Douvli P, Blionis GJ, Halley JM (2003) Effects of monoterpenoid, acting alone or in pairs, on seed germination and subsequent seedling growth. J Chem Ecol 29:2281–2301

    Article  CAS  PubMed  Google Scholar 

  • Walling C (1975) Fenton’s reagent revisited. Acc Chem Res 8:125–131

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pear roots. Plant Physiol 125:199–208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao H, Kalivendi S, Zhang H, Joseph J, Nithipatikom K, Vasquez-Vivar J, Kalyanaraman B (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic Biol Med 34:1359–1368

    Article  CAS  PubMed  Google Scholar 

  • Zunino MP, Zygadlo JA (2004) Effect of monoterpenes on lipid oxidation in maize. Planta 219:303–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Y. Fujii (Tokyo University of Agriculture and Technology, Japan) for his helpful suggestions. This work was partially supported by a Grant-in-Aid for Scientific Research (C) (No. 25450068) from the Japan Society for the Promotion of Science.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukari Sunohara.

Additional information

Handling Editor: Peter Nick

Yukari Sunohara and Yohei Baba contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunohara, Y., Baba, Y., Matsuyama, S. et al. Screening and identification of phytotoxic volatile compounds in medicinal plants and characterizations of a selected compound, eucarvone. Protoplasma 252, 1047–1059 (2015). https://doi.org/10.1007/s00709-014-0739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0739-4

Keywords

Navigation