Skip to main content
Log in

Effect of monoterpenes on lipid oxidation in maize

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The monoterpenes 1,8-cineole, thymol, geraniol, menthol and camphor strongly inhibited the root growth of Zea mays L. seedlings. They induced an oxidative stress as measured by the production of malondialdehyde, conjugated dienes and peroxides. This oxidative stress depended on the length of the exposure and on the monoterpene applied. The total fatty acid content was measured and fatty acid composition was analyzed. Unsaturated fatty acids increased in the treated samples. The alcoholic and non-alcoholic monoterpenes appeared to have different modes of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MDA :

Malondialdehyde

TFA :

Total fatty acid content

FA :

Fatty acid

IC 80 :

Concentration causing 80% inhibition

References

  • Abrahim D, Braguini WL, Kelmer-Bracht AM, Ishii-iwamoto EL (2000) Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J Chem Ecol 26:611–624

    Article  Google Scholar 

  • Asplund RO (1968) Monoterpenes: relationship between structure and inhibition of germination. Phytochemistry 7:1995–1997

    Article  Google Scholar 

  • Beuge JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    CAS  PubMed  Google Scholar 

  • Boveris A, Cadenas E, Chance B (1980) Low level chemiluminescence of the lipoxygenase reaction. Photobiochem Photobiophys 1:175–182

    CAS  Google Scholar 

  • Bradow JM, Connick WJ Jr (1988) Volatile methyl ketone seed-germination inhibitors from Amaranthus palmeri S. Wats. residues. J Chem Ecol 14:1617–1631

    CAS  Google Scholar 

  • Bradow JM, Connick WJ Jr (1990) Volatile seed germination inhibitors from plant residues. J Chem Ecol 16:645–666

    CAS  Google Scholar 

  • Chapman RA, MacKay K (1949) The estimation of peroxides in fats and oils by the ferric thiocyanate method. J Am Oil Chem Soc 7:360–363

    Google Scholar 

  • Deighton N, Glidewell SM, Deans SG, Goodman BA (1993) Identification by EPR spectroscopy of carvacrol and thymol as the mayor sources of free radicals in the oxidation of plant essential oils. J Sci Food Agric 63:221–225

    CAS  Google Scholar 

  • De Santis A, Landi P, Genchi G (1999) Changes of mitochondrial properties in maize seedlings associated with selection for germination at low temperature. Fatty acid composition, cytochrome c oxidase, and adenine nucleotide translocase activities. Plant Physiol 119:743–754

    Article  PubMed  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    CAS  Google Scholar 

  • Dudai N, Larkov O, Mayer AM, Poljakoff-Mayber A, Putievsky E, Lerner HR (2000) Metabolism of essential oils during inhibition of wheat seed germination. In: Black M, Bradford KJ, Vázquez-Ramos J (eds) Seed biology: advances and applications. CABI, Wallingford, UK, p 315

  • Einhellig FA, Leather GR (1988) Potentials for exploiting allelopathy to enhance crop production. J Chem Ecol 14:1829–1844

    CAS  Google Scholar 

  • Fischer NH (1986) The function of mono and sesquiterpenes as plant germination and growth regulators. In: Putnam A, Chung-Shih Tang (eds) The science of allelopathy. Wiley, London, p 203

  • Fischer NH (1991) Plant terpenoids as allelopathic agents. In: Harborne JB, Tomas-Barberan FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarenden, Oxford, p 387

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–25

    Google Scholar 

  • Fridovich I (1986) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58:61–97

    CAS  PubMed  Google Scholar 

  • García DA, Perillo MA, Zygadlo JA, Martijena ID (1995) The essential oil from Tagetes minuta L. modulates binding of [3H]-FNTZ to membranes from brain cortex. Lipids 30:1105–1110

    PubMed  Google Scholar 

  • Grosso NR, Lamarque AL, Maestri DM, Zygadlo JA, Guzman CA (1994) Fatty acid variation of runner peanut (Arachis hypogaea L.) among geographic from Córdoba (Argentina). J Am Oil Chem Soc 71:541–542

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon Press, Oxford, pp 188–275

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acids peroxidation. Arch Biochem Biophys 125:189–198

    CAS  PubMed  Google Scholar 

  • Hooks MA, Bode K, Couée I (1995) Regulation of acyl-CoA oxidases in maize seedlings. Phytochemistry 40:657–660

    Article  Google Scholar 

  • Jiménez A, Hernández JA, Pastori G, del Rio LA, Sevilla F (1998) Role of the ascorbate–glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  PubMed  Google Scholar 

  • Karp G (ed) (1987) Biología Celular. McGraw-Hill, Maidenhead, UK

  • Koga T, Nagao A, Terao J, Sawada K, Mukai K (1994) Synthesis of a phosphatidyl derivative of vitamin E and its antioxidant activity in phospholipid bilayers. Lipids 29:83–88

    PubMed  Google Scholar 

  • Koitabashi R, Suzuki T, Kawazu T, Sakai A, Kuroiwa H, Kuroiwa T (1997) 1,8-Cineole inhibits root growth and DNA synthesis in the root apical meristem of Brassica campestris L.. J Plant Res 110:1–6

    CAS  Google Scholar 

  • Kosugi H, Jojima T, Kikugawa K (1989) Thiobarbituric acid-reactive substances from peroxidized lipids. Lipids 24:873–881

    CAS  Google Scholar 

  • Lorber P, Muller WH (1976) Volatile growth inhibitors produced by Salvia leucophylla: effects on seedling root tip ultrastructure. A J Bot 63:196–200

    Google Scholar 

  • Maffei M, Camusso W, Sacco S (2001) Effect of Mentha × piperita essential oil and monoterpenes on cucumber root membrane potential. Phytochemistry 58:703–707

    Article  PubMed  Google Scholar 

  • McKersie BD, Hoekstra FA, Krieg LC (1990) Differences in the susceptibility of plant membrane lipids to peroxidation. Biochim Biophys Acta 1030:119–126

    Article  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Muscari CL, Frascaro M, Guarnieri C, Caldarera CIM (1990) Mitochondrial function and superoxide generation from submitochondrial particles of aged rat hearts. Biochim Biophys Acta 1015:200–204

    Article  PubMed  Google Scholar 

  • Panasiuk O, Bills DD, Leather GR (1986) Allelopathic influence of Sorghum bicolor on weeds during germination and early development of seedlings. J Chem Ecol 12:1533–1543

    Google Scholar 

  • Pastori GM, del Rio LA (1994) An activated-oxygen-mediated role for peroxisomes in the mechanism of senescence of Pisum sativum L. leaves. Planta 193:385–391

    CAS  Google Scholar 

  • Pastori GM, Trippi VS (1995) Fatty acid composition in water- and oxygen-stressed leaves of maize and wheat strains. Phytochemistry 40:45–48

    Article  Google Scholar 

  • Perillo MA, Guidoti A, Costa E, Yu R, Maggio B (1994) Modulation of phospholipase A2 and C activities against dilauroylphosphorylcholine in mixed monolayers with semisynthetic derivatives of ganglioside and sphingosine. Mol Membr Biol 11:119–126

    PubMed  Google Scholar 

  • Perillo MA, Garcia DA, Marin RH, Zygadlo JA (1999) Tagetone modulates the coupling of flunitrazepam and GABA binding sites at GABAA receptor from chick brain membranes. Mol Membr Biol 16:189–194

    Article  PubMed  Google Scholar 

  • Poirier Y, Venbe G, Caldelari D (1999) Increased flow of fatty acids toward oxidation in developing seeds of Arabidopsis deficient in diacylglycerol acyltransferase activity or synthesizing medium-chain-length fatty acids. Plant Physiol 121:1359–1366

    Article  PubMed  Google Scholar 

  • Romagni JG, Allen SN, Dayan FE (2000) Allelopathic effects of volatile cineoles on two weedy plant species. J Chem Ecol 26:303–313

    Google Scholar 

  • Schmedes A, Holmer G (1989) A new thiobarbituric acid (TBA) method for determining free malondialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation. J Am Oil Chem Soc 66:813–816

    CAS  Google Scholar 

  • Sikkema J, De Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed  Google Scholar 

  • Tarayre M, Thompson JD, Escarré J, Linhart YB (1995) Intra-specific variation in the inhibitory effects of Thymus vulgaris (Labiatae) monoterpenes on seed germination. Oecologia 101:110–118

    Google Scholar 

  • Turina AV, Perillo MA (2003) Monoterpenes affect chlorodiazepoxide–micelle interaction through micellar dipole potential modifications. Biochim Biophys Acta 1616:112–120

    PubMed  Google Scholar 

  • Vaughn SF, Spencer GF (1993) Volatile monoterpenes as potential parent structures for new herbicides. Weed Sci 41:114–119.

    CAS  Google Scholar 

  • Vigh L, Horváth I, Horváth LI, Dudits D, Farkas T (1979) Protoplast plasmalemma fluidity of hardenes wheats correlates with frost resistance. FEBS Lett 107:291–294

    Article  PubMed  Google Scholar 

  • Weidenhamer JD, Menelaou M, Macias FA, Fisher NH, Richardson DR, Williamson B (1994) Allelopathic potential of menthofuran monoterpenes from Calamintha ashei. J Chem Ecol 20:3345–3359

    CAS  Google Scholar 

  • Willms JR, Salon C, Layzell DB (1999) Evidence for light-stimulated fatty acid synthesis in soybean fruit. Plant Physiol 120:1117–1128

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Agencia Córdoba Ciencia and S.E.C.YT.–U.N.C. for financial support, and Dr. Perillo for critical reading of the manuscript. The comments made by two anonymous referees are gratefully acknowledged. M.P.Z. is in receipt of a fellowship from Consejo Nacional de Investigaciones Científicas y Técnicas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María P. Zunino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zunino, M.P., Zygadlo, J.A. Effect of monoterpenes on lipid oxidation in maize. Planta 219, 303–309 (2004). https://doi.org/10.1007/s00425-004-1216-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1216-7

Keywords

Navigation