Skip to main content
Log in

Essential Oil of Artemisia scoparia Inhibits Plant Growth by Generating Reactive Oxygen Species and Causing Oxidative Damage

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We investigated the chemical composition and phytotoxicity of the essential oil extracted from leaves of Artemisia scoparia Waldst. et Kit. (red stem wormwood, Asteraceae). GC/GC-MS analyses revealed 33 chemical constituents representing 99.83% of the oil. The oil, in general, was rich in monoterpenes that constitute 71.6%, with β-myrcene (29.27%) as the major constituent followed by (+)-limonene (13.3%), (Z)-β-ocimene (13.37%), and γ-terpinene (9.51%). The oil and β-myrcene were evaluated in a dose–response bioassay under laboratory conditions for phytotoxicity against three weeds—Avena fatua, Cyperus rotundus, and Phalaris minor. A significant reduction in germination, seedling growth, and dry matter accumulation was observed in the test weeds. At the lowest treatment of 0.07 mg/ml Artemisia oil, germination was reduced by 39%, 19%, and 10.6% in C. rotundus, P. minor, and A. fatua, respectively. However, the inhibitory effect of β-myrcene was less. In general, a dose-dependent effect was observed and the growth declined with increasing concentration. Among the three weeds, the inhibitory effect was greatest on C. rotundus, so it was selected for further studies. We explored the explanation for observed growth inhibition in terms of reactive oxygen species (ROS: lipid peroxidation, membrane integrity, and amounts of conjugated dienes and hydrogen peroxide)-induced oxidative stress. Exposure of C. rotundus to Artemisia oil or β-myrcene enhanced solute leakage, indicating membrane disintegration. There were increased levels of malondialdehyde and hydrogen peroxide, indicating lipid peroxidation and induction of oxidative stress. We conclude that Artemisia oil inhibits plant root growth through generation of ROS-induced oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrahim, D., Braguini, W. L., Kelmer Bracht, A. M., and Ishi-Iwamoto, E. L. 2000. Effects of four monoterpenes on germination primary root growth and mitochondrial respiration of maize. J. Chem. Ecol. 26:611–623.

    Article  CAS  Google Scholar 

  • Adams, R. P. 1995. Identification of Essential Oil Components by Gas Chromatography Mass Spectroscopy. Allured Publishing, Carol Stream, Illinois.

    Google Scholar 

  • Anonymous 1993. Artemisia Linn, pp. 434–442, in G. P. Phondke (ed.). The Wealth of India—Raw Materials, vol. III (Ca–Ci), revised series. Council of Scientific and Industrial Research, New Delhi, India.

    Google Scholar 

  • Bakkali, F., Averbeck, S., Averbeck, D., and Idaomar, M. 2008. Biological effects of essential oils—a review. Food Chem. Toxicol. 46:446–475.

    Article  PubMed  CAS  Google Scholar 

  • Barney, J. N., Hay, A. G., and Weston, L. A. 2005. Isolation and characterisation of allelopathic volatiles from mugwort (Artemisia vulgaris). J. Chem. Ecol. 31:247–265.

    Article  PubMed  CAS  Google Scholar 

  • Basher, K. H. C., Ozek, T., Demirehakmak, B., Nuriddinov, K. H. R., Abduganiev, B. Y. O., Aripov, K. H. N., Khodzimatov, K. K. H., Nigmatullaev, O. A., and Shamyanov, E. D. 1997. Essential oils of some Artemisia species from Central Asia. Chem. Nat. Comp. 33:383–385.

    Google Scholar 

  • Batish, D. R., Setia, N., Singh, H. P., and Kohli, R. K. 2004. Phytotoxicity of lemon-scented eucalypt oil and its potential use as a bioherbicide. Crop Prot. 23:1209–1214.

    Article  CAS  Google Scholar 

  • Batish, D. R., Singh, H. P., Setia, N., Kaur, S., and Kohli, R. K. 2006a. Chemical composition and inhibitory activity of essential oil from decaying leaves of Eucalyptus citriodora. Z. Naturforsch. 61c:52–56.

    Google Scholar 

  • Batish, D. R., Singh, H. P., Setia, N., Kaur, S., and Kohli, R. K. 2006b. Chemical composition and phytotoxicity of volatile essential oil from intact and fallen leaves of Eucalyptus citriodora. Z. Naturforsch. 61:465–471.

    CAS  Google Scholar 

  • Batish, D. R., Lavanya, K., Singh, H. P., and Kohli, R. K. 2007a. Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regul. 51:119–128.

    Article  CAS  Google Scholar 

  • Batish, D. R., Singh, H. P., Setia, N., Kohli, R. K., Kaur, S., and Yadav, S. S. 2007b. Alternative control of littleseed canary grass using eucalypt oil. Agron. Sustain. Dev. 27:171–177.

    Article  CAS  Google Scholar 

  • Batish, D. R., Singh, H. P., Kohli, R. K., and Kaur, S. 2008. Eucalyptus essential oil as natural pesticide. For. Ecol. Manage. 256:2166–2174.

    Article  Google Scholar 

  • Dayan, F. E., Romagni, J., and Duke, S. O. 2000. Investigating the mode of action of natural phytotoxins. J. Chem. Ecol. 26:2079–2094.

    Article  CAS  Google Scholar 

  • Duke, S. O., and Kenyon, W. H. 1993. Peroxidizing activity determined by cellular leakage, pp. 61–66, in P. Böger, and G. Sandmann (eds.). Target Assays for Modern Herbicides and Related Phytotoxic Compounds. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Ens, E. J., Bremner, J. B., French, K., and Korth, J. 2008. Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol. Inv. 11:275–287. doi:10.1007/s10530-008-9232-3.

    Article  Google Scholar 

  • Heath, R. L., and Packer, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189–198.

    Article  PubMed  CAS  Google Scholar 

  • Kong, C. H., Hu, F., Xu, T., and Lu, Y. H. 1999. Allelopathic potential and chemical constituents of volatile oil from Ageratum conyzoides. J. Chem. Ecol. 25:2347–2356.

    Article  CAS  Google Scholar 

  • Langenheim, J. H. 1994. Higher plant terpenoids: a phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280.

    Article  CAS  Google Scholar 

  • Maffei, M., Camusso, W., and Sacco, S. 2001. Effect of Mentha × piperita essential oil and monoterpenes on cucumber root membrane potential. 2001. Phytochemistry 58:703–707.

    Article  PubMed  CAS  Google Scholar 

  • McLafferty, F. W. 1989. Registry of Mass Spectral Data. 5th edn.John Wiley and Sons, New York.

    Google Scholar 

  • Mirjalili, M. H., Tabatabaei, S. M. F., Hadian, J., Ebrahimi, S. N., and Sonboli, A. 2007. Phenological variation of the essential oil of Artemisia scoparia Waldst. et Kit from Iran. J. Essential Oil. Res. 19:326–329.

    CAS  Google Scholar 

  • Montillet, J.-L., Chamnongpol, S., Rustérucci, C., Dat, J., Van de Cotte, B., Agnel, J.-P., Battesti, C., Inzé, D., Van Breusegem, F., and Triantaphylidès, C. 2005. Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol. 138:1516–1526.

    Article  PubMed  CAS  Google Scholar 

  • Muller, C. H., Muller, W. H., and Haines, B. L. 1964. Volatile growth inhibitors produced by aromatic shrubs. Science 143:471–473.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, N., Tamotsu, S., Nagata, N., Saito, C., and Sakai, A. 2005. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 31:1187–1203.

    Article  PubMed  CAS  Google Scholar 

  • Romagni, J. G., Allen, S. N., and Dayan, F. E. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 26:303–313.

    Article  CAS  Google Scholar 

  • Safaei-Ghomi, J., Bamoniri, A., Sarafraz, M. B., and Batooli, H. 2005. Volatile components from Artemisia scoparia Waldst. et Kit. growing in central Iran. Flavour Fragr. J. 20:650–652.

    Article  CAS  Google Scholar 

  • Scrivanti, L. R., Zunino, M., and Zygadlo, J. A. 2003. Tagetes minuta and Schinus areira essential oils as allelopathic agents. Biochem. Syst. Ecol. 31:563–572.

    Article  CAS  Google Scholar 

  • Singh, H. P., Batish, D. R., Kaur, S., Ramezani, H., and Kohli, R. K. 2002. Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Ann. Appl. Biol. 141:111–116.

    Article  CAS  Google Scholar 

  • Singh, H. P., Batish, D. R., and Kohli, R. K. 2003. Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Crit. Rev. Plant Sci. 22:239–311.

    Article  CAS  Google Scholar 

  • Singh, H. P., Batish, D. R., Setia, N., and Kohli, R. K. 2005. Herbicidal activity of volatile essential oils from Eucalyptus citriodora against Parthenium hysterophorus. Ann. Appl. Biol. 146:89–94.

    Article  CAS  Google Scholar 

  • Singh, H. P., Batish, D. R., Kaur, S., Arora, K., and Kohli, R. K. 2006a. α-pinene inhibits growth and induces oxidative stress in roots. Ann. Bot. 98:1261–1269.

    Article  PubMed  CAS  Google Scholar 

  • Singh, H. P., Batish, D. R., Kaur, S., Kohli, R. K., and Arora, K. 2006b. Phytotoxicity of volatile monoterpene citronellal against some weeds. Z. Naturforsch. 61c:334–340.

    Google Scholar 

  • Singh, H. P., Batish, D. R., Kohli, R. K., and Arora, K. 2007. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 53:65–73.

    Article  CAS  Google Scholar 

  • Singh, H. P., Kaur, S., Mittal, S., Batish, D. R., and Kohli, R. K. 2008. Phytotoxicity of major constituents of volatile oil from leaves of Artemisia scoparia Waldst. & Kit. Z. Naturforsch. 63c:663–666.

    Google Scholar 

  • Singh, H. P., Mittal, S., Kaur, S., Batish, D. R., and Kohli, R. K. 2009. Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia. Food Chem. 57:21–30. doi:10.1007/s10725-008-9314-3.

    CAS  Google Scholar 

  • Stein, S. E. 1990. National Institute of Standards and Technology (NIST). Mass Spectral Data Base and Software, Ver. 3.02. Gaithersburg, Maryland, USA.

    Google Scholar 

  • Stone, J. R., and Yang, S. 2006. Hydrogen peroxide: a signaling messenger. Antioxidant Redox Signal. 8:243–270.

    Article  CAS  Google Scholar 

  • Takeda, T., Yokota, A., and Shigeoka, S. 1995. Resistance of photosynthesis to hydrogen peroxide in algae. Plant Cell. Physiol. 36:1089–1095.

    CAS  Google Scholar 

  • Vaughn, S. F. 1991. Natural compounds from spices could replace potato sprouting inhibitors. Ind. Bioprocess. 13:5.

    Google Scholar 

  • Weaver, T., and Klarich, D. 1977. Allelopathic effects of volatile substances from Artemisia tridentata Nutt. Am. Midl. Nat. 97:508–512.

    Article  Google Scholar 

  • Yun, K. W., Kil, B. S., and Han, D. M. 1993. Phytotoxic and antimicrobial activity of volatile constituents of Artemisia princeps var. orientalis. J. Chem. Ecol. 19:2757–2766.

    Article  CAS  Google Scholar 

  • Zunino, M. P., and Zygadlo, J. A. 2004. Effect of monoterpenes on lipid peroxidation in maize. Planta 219:303–309.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Shalinder Kaur and Sunil Mittal are thankful to Department of Science and Technology, Government of India, New Delhi, and University Grants Commission, New Delhi, India, respectively, for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harminder Pal Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H.P., Kaur, S., Mittal, S. et al. Essential Oil of Artemisia scoparia Inhibits Plant Growth by Generating Reactive Oxygen Species and Causing Oxidative Damage. J Chem Ecol 35, 154–162 (2009). https://doi.org/10.1007/s10886-009-9595-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9595-7

Keywords

Navigation