Skip to main content
Log in

Correspondence between flowers and leaves in terpenoid indole alkaloid metabolism of the phytoplasma-infected Catharanthus roseus plants

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Several plants of Catharanthus roseus cv ‘leafless inflorescence (lli)’ showing phenotype of phytoplasma infection were observed for symptoms of early flowering, virescence, phyllody, and apical clustering of branches. Symptomatic plants were studied for the presence/absence and identity of phytoplasma in flowers. Transcription levels of several genes involved in plants’ metabolism and development, accumulation of pharmaceutically important terpenoid indole alkaloids in flowers and leaves and variation in the root-associated microbial flora were examined. The expression profile of 12 genes studied was semi-quantitatively similar in control leaves and phytoplasma-infected leaves and flowers, in agreement with the symptoms of virescence and phyllody in phytoplasma-infected plants. The flowers of phytoplasma-infected plants possessed the TIA profile of leaves and accumulated catharanthine, vindoline, and vincristine and vinblastine in higher concentrations than leaves. The roots of the infected plants displayed lower microbial diversity than those of normal plants. In conclusion, phytoplasma affected the biology of C. roseus lli plants multifariously, it reduced the differences between the metabolite accumulates of the leaves and flowers and restrict the microbial diversity of rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad JN, Garcion C, Teyssier E, Hernould M, Gallusc P, Pracros P, Renaudin J, Eveillard S (2013) Effects of stolbur phytoplasma infection on DNA methylation processes in tomato plants. Plant Pathol 62:205–216

    Article  CAS  Google Scholar 

  • Albertazzi G, Milc J, Caffagni A, Francia E, Roncaglia E, Ferrari F, Tagliafico E, Stefani E, Pecchioni N (2009) Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Sci 176:792–804

    Article  CAS  Google Scholar 

  • Aldaghi M, Massart S, Bertaccini A, Lepoivre P (2010) Identification of host genes potentially implicated in the Malus pumila and ‘Candidatus Phytoplasma mali’ interactions. Julius-Kühn-Archiv 427

  • Bai X, Zhang J, Ewing A, Miller SA, Jancso Radek A, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA (2006) Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188:3682–3696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bertaccini A (2007) Phytoplasmas: diversity, taxonomy, and epidemiology. Front Biosci 12:673–689

    Article  PubMed  CAS  Google Scholar 

  • Bertamini M, Grando MS, Nedumchezhian N (2004) Effects of phytoplasma infection on pigments, chlorophyll–protein complex and photosynthesis activities in field grown apple leaves. Biol Planatarum 47:237–242

    Article  Google Scholar 

  • Bruni R, Pellati F, Bellardi MG, Benvenuti S, Paltrinieri S, Bertaccini A, Bianchi A (2005) Herbal drug quality and phytochemical composition of Hypericum perforatum L. affected by ash yellows phytoplasma infection. J Agric Food Chem 53:964–968

    Article  PubMed  CAS  Google Scholar 

  • Brzin N, Petrovic M, Ravnikar KM (2011) Induction of sucrose synthase in the phloem of phytoplasma infected maize. Biol plantarum 55:711–715

    Article  CAS  Google Scholar 

  • Carginale V, Maria G, Capassoa C, Ionata E, Cara FL, Pastore M, Bertaccini A, Capassoa A (2004) Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca by messenger RNA differential display. Gene 332:29–34

    Article  PubMed  CAS  Google Scholar 

  • Chang CJ (1998) Pathogenicity of aster yellows phytoplasma and Spiroplasma citri on Periwinkle. Phytopathology 88:1347–1350

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary S, Sharma V, Prasad M, Bhatia S, Tripathi BN, Yadav G, Kumar S (2011) Characterization and genetic linkage mapping of the horticulturally important mutation leafless inflorescence (lli) in periwinkle Catharanthus roseus. Sci Horticulturae 129:142–153

    Article  CAS  Google Scholar 

  • Chaudhary AA, Yadav D, Hemant Jamil SS, Asif M (2013) Real time sequence characterized amplified region (RT-SCAR) marker: development and its application for authentication and quantification of Catharanthus roseus L. Don. J Med Plants Res 7:1154–1160

    Google Scholar 

  • Chen WY, Lin CP (2011) Characterization of Catharanthus roseus genes regulated differentially by peanut witches’ broom phytoplasma infection. J Phytopathol 159:505–510

    Article  CAS  Google Scholar 

  • Chockalingam S, Sundari MSN, Thenmozhi S (1989) Impact of the extract of Catharanthus roseus on feeding and enzymatic digestive activities of Spodoptera litura. J Environ Biol 10:303–307

    Google Scholar 

  • Choi YH, Tapias EC, Kim HK, Lefeber AWM, Erkelens C, Verhoeven JTJ, Brzin J, Zel J, Verpoorte R (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H NMR spectroscopy and multivariate data analysis. Plant Physiol 135:2398–2410

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Christensen NM, Nicolaisen M, Hansen M, Schulz A (2004) Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol Plant Microbe Interact 17:1175–1184

    Article  PubMed  CAS  Google Scholar 

  • Chung WC, Chen LL, Lo WS, Lin CP, Kuo CH (2013) Comparative analysis of the peanut witches’-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLOS one 8:e62770

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Luca V, Capasso C, Capasso A, Pastore M, Carginale V (2011) Gene expression profiling of phytoplasma-infected Madagascar periwinkle leaves using differential display. Mol Biol Rep 38:2293–3000

    Google Scholar 

  • Duduk B, Bertaccini A (2011) Phytoplasma classification: taxonomy based on 16S ribosomal gene, is it enough? Phytopathogenic Mollicutes 1:3–13

    Article  Google Scholar 

  • Dutta A, Batra J, Pandey-Rai S, Singh D, Kumar S, Sen J (2005) Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L.) G. Don. Planta 220:376–383

    Article  PubMed  CAS  Google Scholar 

  • Endo TA, Goodbody MM (1987) Alkaloid production in root and shoot cultures of Catharanthus roseus. Planta Med 53:479–482

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol 52:29–66

    Article  PubMed  CAS  Google Scholar 

  • Favali MA, Musetti R, Benvenuti S, Bianchi A, Pressacco L (2004) Catharanthus roseus L. plants and explants infected with phytoplasmas: alkaloid production and structural observations. Protoplasma 223:45–51

    Article  PubMed  CAS  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:1360–1385

    Article  Google Scholar 

  • Garland JL (1996) Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol Biochem 28:213–221

    Article  CAS  Google Scholar 

  • Goyal P, Khanna A, ChauhanA CG, Kaushik P (2008) In vitro evaluation of crude extracts of Catharanthus roseus for potential antibacterial activity. Int J Green Pharm 2:176–181

    Article  Google Scholar 

  • Guirimand G, Guihur A, Ginis O, Poutrain P, Héricourt F, Oudin A (2011a) The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J 278:749–763

    Article  PubMed  CAS  Google Scholar 

  • Guirimand G, Guihur A, Poutrain P, Héricourt F, Mahroug S, St-Pierre B, Burlat V, Courdavault V (2011b) Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. J Plant Physiol 168:549–557

    Article  PubMed  CAS  Google Scholar 

  • Gundersen DE, Lee IM, Rehner SA, Davis RE, Kingsbury DT (1994) Phylogeny of Mycoplasma like organisms (Phytoplasmas): a basis for their classification. J Bacteriol 176:5244–5254

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hedhili S, Courdavault V, Giglioli-Guivarc’h N, Gantet P (2007) Regulation of the terpene moiety biosynthesis of Catharanthus roseus terpene indole alkaloids. Phytochem Rev 6:341–351

    Article  CAS  Google Scholar 

  • Hodgetts J, Boonham N, Mumford R, Harrison N, Dickinson M (2008) Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. Int J Syst Evol Microbiol 58:1826–1837

    Article  PubMed  CAS  Google Scholar 

  • Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol 9:403–423

    Article  PubMed  CAS  Google Scholar 

  • Hren M, Nikolić P, Rotter A, Blejec A, Terrier N (2009) ‘Bois noir’ phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics 10:460

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishikawa H, Colby DA, Boger DL (2008) Direct coupling of catharanthine and vindoline to provide vinblastine: total synthesis of (+)- and ent-(−)-vinblastine. J Am Chem Soc 130:420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jagoueix-Eveillard S, Tarendeau F, Guolter K, Danet JL, Bové JM, Garnier M (2001) Catharanthus roseus genes regulated differentially by mollicute infections. Mol Plant Microbe Interact 14:225–233

    Article  PubMed  CAS  Google Scholar 

  • Khanuja SPS, Shasany AK, Darokar MP, Kumar S (1999) Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol Biol 17:1–7

    Article  Google Scholar 

  • Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E (2012) Current view on phytoplasma genomes and encoded metabolism. Sci World J. doi:10.1100/2012/185942

    Google Scholar 

  • Kulkarni RN, Baskaran K, Chandrashekhara RS, Kumar S (1999) Inheritance of morphological traits of periwinkle mutants with modified contents and yields of leaf and root alkaloids. Plant Breed 118:71–74

    Article  CAS  Google Scholar 

  • Kulkarni RN, Sreevalli Y, Baskaran K (2005) Allelic differences at two loci govern different mechanisms of intraflower self-pollination in self pollinating strains of periwinkle. J Hered 96:71–77

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Chaudhary S, Kumari R, Sharma V, Kumar A (2012) Development of improved horticultural genotypes characterized by novel overflowering inflorescence trait in periwinkle Catharanthus roseus. Proc Natl Acad Sci, India. Doi. 1007/S40011–012–0048–7.

  • Kumar S, Kumari R, Sharma V, Sharma V (2013) Roles and establishment, maintenance and erasing of the epigenetic cytosine methylation markers in plants. J Genetics 92: xx-xx

  • Kumari R, Sharma V, Sharma V, Kumar S (2013) Pleiotropic phenotypes of the salt tolerant and cytosine hypomethylated leafless inflorescence, evergreen dwarf and irregular leaf lamina mutants of Catharanthus roseus possessing mendelian inheritance. J Genetics 92: xx-xx

  • Laflamme P, St-Pierre B, De Luca V (2000) Molecular and biochemical analysis of a Catharanthus roseus (L.)G. Don root-specific minovincinine 19-hydroxy-O-acetyltransferase. Plant Physiol 125:189–198

    Article  Google Scholar 

  • Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Rose SRU (2010) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–588

    Article  PubMed  CAS  Google Scholar 

  • Lee IM, Gundersen-Rindal D, Davis RE, Bartoszyk IM (1998) Revised classification scheme of phytoplasmas based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48:1153–1169

    Article  CAS  Google Scholar 

  • Lee IM, Zhao Y, Bottner KD (2006) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Mol Cell Probes 20:87–91

    Article  PubMed  CAS  Google Scholar 

  • Levac D, Murata J, Kim WS, De Luca V (2008) Application of carborundum abrasion for investigating the leaf epidermis: molecular cloning of Catharanthus roseus 16-hydroxytabersonine-16-O-methyltransferase. Plant J 53:225–236

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Chen W, Ma D, Wu Y (2013) cDNA-AFLP analysis revealed genes potentially implicated in Catharanthus roseus flowers during wheat blue dwarf phytoplasma infection. Physiol Mol Plant Pathol http://dx.doi.org/10.1016/j.pmpp

  • Liu Y, Zhao DM, Zu YG, TangZH ZZH, Jiang Y, Shi DY (2011) Effects of low light on terpenoid indole alkaloid accumulation and related biosynthetic pathway gene expression in leaves of Catharanthus roseus seedlings. Bot Stud 52:191–196

    CAS  Google Scholar 

  • Longoria-Espinoza RM, Douriet Gámez NR, López Meyer M, Quiroz Figueroa F, Bueno Ibarra M, Méndez Lozano J, Santos Cervantes ME (2012) Differentially regulated genes in Solanum tuberosum in response to “Mexican potato purple top phytoplasma” infection. Physiol Mol Plant Pathol 81:33–44

    Article  Google Scholar 

  • Lopes Cardoso MI, Meijer AH, Rueb S, Machado JA, Memelink J, Hoge JH (1997) A promoter region that controls basal and elicitor-inducible expression levels of the NADPH:cytochrome P450 reductase gene (Cpr) from Catharanthus roseus binds nuclear factor GT-1. Mol Gen Genet 256:674–681

    Google Scholar 

  • Loyola-Vargas VM, Galaz-A RM, Ku-Cauich VR (2007) Catharanthus biosynthetic enzymes: the road ahead. Phytochem Rev 6:307–339

    Article  CAS  Google Scholar 

  • Luijendijk TJC, van der Heijden E, Verpoorte R (1996) Involvement of strictosidine as a defensive chemical in Catharanthus roseus. J Chem Ecol 22:1355–1366

    Article  PubMed  CAS  Google Scholar 

  • MacLeanm AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Toth R, Nicolaisen M, Hogenhout SA (2011) Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol 157:831–841

    Article  Google Scholar 

  • Mahroug S, Burlat V, St-Pierre B (2007) Cellular and sub-cellular organisation of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Phytochemistry 6:363–381

    Article  CAS  Google Scholar 

  • Marcone C, Lee IM, Davis RE, Ragozzino A, Seemüller E (2000) Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. Int J Syst Evol Microbiol 50:1703–1713

    PubMed  CAS  Google Scholar 

  • Maust BE, Espadas F, Talavera C, Aguilar M, Santamaría JM, Oropeza C (2003) Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93:976–981

    Article  PubMed  CAS  Google Scholar 

  • Meisner J, Weissenberg M, Palevitch D, Aharonson N (1981) Phagodeterrency induced by leaves and leaf extracts of Catharanthus roseus in the larva of Spodoptera littoralis (Lepidoptera, Noctuidae). J Econ Entomol 74:131–135

    Google Scholar 

  • Mishra P, Uniyal GC, Sharma S, Kumar S (2001) Pattern of diversity for morphological and yield related traits among the periwinkle Catharanthus roseus accessions collected from in and around Indian subcontinent. Genet Resour Crop Evol 48:273–286

    Article  Google Scholar 

  • Murata J, De Luca V (2005) Localization of tabersonine-16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44:581–594

    Article  PubMed  CAS  Google Scholar 

  • Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20:524–542

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Musetti R, Favali MA (2003) Cytochemical localization of calcium and X-ray microanalysis of Catharanthus roseus L. infected with phytoplasmas. Micronesian 34:387–393

    Article  CAS  Google Scholar 

  • Musetti R, Favali MA, Pressacco L (2000) Histopathology and polyphenol content in plants infected by phytoplasmas. Cytobios 102:133–147

    PubMed  CAS  Google Scholar 

  • Musetti R, De Marco F, Farhan K, Polizzotto R, Simonetta S, Ermacora P, Osler R (2011) Phloem-specific protein expression patterns in apple and grapevine during phytoplasma infection and recovery. Bull Insectol 64:S211–S212, ISSN 1721–886

    Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  PubMed  CAS  Google Scholar 

  • Nicolaisen M, Horvath DP (2008) A branch-inducing phytoplasma in Euphorbia pulcherrima is associated with changes in expression of host genes. J Phyopathol 156:403–407

    Article  CAS  Google Scholar 

  • Omar AF, Emeran AA, Abass JM (2008) Detection of phytoplasma associated with periwinkle virescence in Egypt. Plant Pathol J 7:92–97

    Article  CAS  Google Scholar 

  • Papon N, Bremer J, Vanisiri A, Andreu F, Ridean M, Creche J (2005) Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in C. roseus suspension cells. Planta Med 71:572–574

    Article  PubMed  CAS  Google Scholar 

  • Peiris V, Oppenheim BA (1993) Antimicrobial activity of cytotoxic drugs may influence isolation of bacteria and fungi from blood cultures. Clin Pathol 46:1124–1125

    Article  CAS  Google Scholar 

  • Pracros P, Renaudin J, Eveillard S, Mouras A, Hernould M (2006) Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Mol Plant Microbe Interact 19:62–68

    Article  PubMed  CAS  Google Scholar 

  • Roepke J, Salim V, Wu M, Thamm AM, Murata J, Ploss K (2010) Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc Natl Acad Sci U S A 107:15287–15292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Santi S, Grisan S, Pierasco A, De Marco F, Musetti R (2013) Laser micro-dissection of grapevine leaf phloem infected by stolbur reveals site-specific gene responses associated to sucrose transport and metabolism. Plant Cell Environ 36:343–355

    Article  PubMed  CAS  Google Scholar 

  • Sharma V, Chaudhary S, Srivastava S, Pandey R, Kumar S (2012) Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus. J Genet 91:49–69

    Article  PubMed  CAS  Google Scholar 

  • Singh DV, Rai SK, Pandey Rai S, Srivastava S, Mishra RK, Chaudhary S (2008) Predominance of the serpentine route in monoterpenoid indole alkaloid pathway of Catharanthus roseus. Proc Natl Acad Sci U S A 74:97–109

    CAS  Google Scholar 

  • Snoeijer W (2001) International register of Catharanthus roseus. Leiden/Amsterdam Centre for Drug Research, Division of Pharmacognosy, Leiden

    Google Scholar 

  • St-Pierre B, Vazquez Flota FA, Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Su YT, Chen JC, Lin CP (2011) Phytoplasma-induced floral abnormalities in Catharanthus roseus are associated with phytoplasma accumulation and transcript repression of floral organ identity genes. Mol Plant Microbe Interact 24:1502–1512

    Article  PubMed  CAS  Google Scholar 

  • Van der Hieijden R, Jacobs DI, Snoeirjer W, Hallard D, Verpoorte R (2004) The Catharanthus roseus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628

    Article  Google Scholar 

  • Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Ann Rev Entomol 51:91–111

    Article  CAS  Google Scholar 

  • Wongkew P, Fletcher J (2004) Sugarcane white leaf phytoplasma in tissue culture: long term maintenance, transmission and oxytetracyline remission. Plant Cell Rep 23:426–434

    Article  Google Scholar 

  • Zhao L, Sander GW, Shanks JV (2013) Perspectives of the metabolic engineering of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Adv Biochem Eng Biotechnol 134:23–54

    PubMed  Google Scholar 

Download references

Acknowledgment

The study was supported by internal grants of CSIR-National Botanical Research Institute, Lucknow and National Institute of Plant Genome Research, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Shekhar Nautiyal.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, S., Pandey, R., Kumar, S. et al. Correspondence between flowers and leaves in terpenoid indole alkaloid metabolism of the phytoplasma-infected Catharanthus roseus plants. Protoplasma 251, 1307–1320 (2014). https://doi.org/10.1007/s00709-014-0621-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0621-4

Keywords

Navigation