Skip to main content
Log in

Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Plasmopara viticola is an economically important pathogen of grapevine. Early detection of P. viticola infection can lead to improved fungicide treatment. Our study aimed to determine whether chlorophyll fluorescence (Chl-F) imaging can be used to reveal early stages of P. viticola infection under conditions similar to those occurring in commercial vineyards. Maximum (FV/FM) and effective quantum yield of photosystem II (ΦPSII) were identified as the most sensitive reporters of the infection. Heterogeneous distribution of FV/FM and ΦPSII in artificially inoculated leaves was associated with the presence of the developing mycelium 3 days before the occurrence of visible symptoms and 5 days before the release of spores. Significant changes of FV/FM and ΦPSII were spatially coincident with localised spots of inoculation across the leaf lamina. Reduction of FV/FM was restricted to the leaf area that later yielded sporulation, while the area with significantly lower ΦPSII was larger and probably reflected the leaf parts in which photosynthesis was impaired. Our results indicate that Chl-F can be used for the early detection of P. viticola infection. Because P. viticola does not expand systemically in the host tissues and the effects of infection are localised, Chl-F imaging at high resolution is necessary to reveal the disease in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CCD:

charged coupled device

Chl-F:

chlorophyll fluorescence

CI:

combinatorial imaging

dpi:

days post-inoculation

F0 :

minimum chlorophyll fluorescence yield in dark-adapted state

FM :

maximum chlorophyll fluorescence yield in dark-adapted state

FM1` FM2`, FM3`, FM4 :

maximum chlorophyll fluorescence yield in light-adapted state measured in 1st, 2nd, 3rd and 4th saturating pulse

FV :

variable chlorophyll fluorescence yield in dark-adapted state

FP :

maximum chlorophyll fluorescence yield measured when the actinic light is switched on

FS :

steady-state chlorophyll fluorescence yield in light-adapted state

Ft :

actual chlorophyll fluorescence yield at a particular time

FV/FM :

maximum quantum yield of photosystem II photochemistry

ΦPSII :

effective quantum yield of photosystem II photochemistry

HL:

high light

IF:

infected area

LED:

Light Emitting Diode

LL:

low light

MIF:

mesophyll-invaded area

NIF:

non-infected area

PSII:

photosystem II

NPQ:

non-photochemical quenching of chlorophyll fluorescence

References

  • Allègre, M., Daire, X., Héloir, M. C., Trouvelot, S., Mercier, L., Adrian, M., et al. (2007). Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. The New Phytologist, 173, 832–840. doi:10.1111/j.1469-8137.2006.01959.x.

    Article  PubMed  Google Scholar 

  • Barbagallo, R. P., Oxborough, K., Pallett, K. E., & Baker, N. R. (2003). Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiology, 132, 485–493. doi:10.1104/pp. 102.018093.

    Article  PubMed  CAS  Google Scholar 

  • Berger, S., Benediktyová, Z., Matouš, K., Benfig, K., Mueller, M. J., Nedbal, L., et al. (2007). Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. Journal of Experimental Botany, 58, 797–806. doi:10.1093/jxb/erl208.

    Article  PubMed  CAS  Google Scholar 

  • Bilger, W., & Björkman, O. (1990). Role of the xantophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis. Photosynthesis Research, 25, 173–185. doi:10.1007/BF00033159.

    Article  CAS  Google Scholar 

  • Björkman, O., & Demmig, B. (1987). Photon yield of O2–evolution and chlorophyll fluorescence characterization at 77 K among vascular plants of diverse origin. Planta, 170, 489–504. doi:10.1007/BF00402983.

    Article  Google Scholar 

  • Bugliosi, R., Spera, G., La Torre, A., Campoli, L., Gianferro, M., & Talocci, S. (2007). A two years study results in the use of artificial neural networks to forecast Plasmopara viticola infection in viticulture. Communications in Agricultural and Applied Biological Sciences, 72, 321–325.

  • Chaerle, L., & Van Der Straeten, D. (2001). Seeing is believing: imaging techniques to monitor plant health. Biochimica et Biophysica Acta, 1519, 153–166.

    PubMed  CAS  Google Scholar 

  • Chou, H.-M., Bundock, N., Rolfe, S. A., & Scholes, J. D. (2000). Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Molecular Plant Pathology, 1, 99–113. doi:10.1046/j.1364-3703.2000.00013.x.

    Article  CAS  Google Scholar 

  • Díez-Navajas, A. M., Greif, C., Poutaraud, A., & Merdinoglu, D. (2007). Two simplified fluorescent staining techniques to observe infection structures of the oomycete Plasmopara viticola in grapevine leaf tissues. Micron (Oxford, England), 38, 680–683. doi:10.1016/j.micron.2006.09.009.

    Google Scholar 

  • Emmett, R. W., Wicks, T. J., & Magarey, P. A. (1992). Downy mildew of grapes. In J. Kumar, H. S. Chaube, U. S. Singh & A. N. Mukhopadhyay (Eds.), Plant diseases of international importance. Vol II: Diseases of fruit crops, pp. 90–128. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Eurostat report. (2007). The use of plant protection products in the European Union. Data 1992–2003. Luxembourg: Eurostat European Commission.

    Google Scholar 

  • Fukunaga, K. (1990). Introduction to statistical pattern recognition. New York: Academic.

    Google Scholar 

  • Genty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87–92.

    CAS  Google Scholar 

  • Jaillon, O., Aury, J.-M., Noel, B., Policriti, A., Clepet, C., et al. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449, 463–468. doi:10.1038/nature06148.

    Article  PubMed  CAS  Google Scholar 

  • Kautsky, H., & Hirsch, A. (1931). Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften, 48, 964–964. doi:10.1007/BF01516164.

    Article  Google Scholar 

  • Kitajima, M., & Butler, W. L. (1975). Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochimica et Biophysica Acta, 376, 105–115. doi:10.1016/0005-2728(75)90209-1.

    Article  PubMed  CAS  Google Scholar 

  • Kortekamp, A. (2005). Growth, occurrence and development of septa in Plasmopara viticola and other members of the Peronosporaceae using light— and epifluorescence-microscopy. Mycological Research, 109, 640–648. doi:10.1017/S0953756205002418.

    Article  PubMed  Google Scholar 

  • La Torre, A., Spera, G., & Lolletti, D. (2005). Grapevine downy mildew control in organic farming. Communications in Agricultural and Applied Biological Sciences, 70, 371–379.

    PubMed  Google Scholar 

  • Lichtenthaler, H. K., & Miehé, J. A. (1997). Fluorescence imaging as a diagnostic tool for plant stress. Trends in Plant Science, 2, 316–320. doi:10.1016/S1360-1385(97)89954-2.

    Article  Google Scholar 

  • Matouš, K., Benediktyová, Z., Berger, S., Roitsch, T., & Nedbal, L. (2006). Case study of combinatorial imaging: what protocol and what chlorophyll fluorescence image to use when visualizing infection of Arabidopsis thaliana by Pseudomonas syringae?. Photosynthesis Research, 90, 243–253. doi:10.1007/s11120-006-9120-6.

    Article  PubMed  Google Scholar 

  • Meyer, S., Saccardy-Adji, K., Rizza, F., & Genty, B. (2001). Inhibition of photosynthesis by Colletotrichum lindemuthianum in bean leaves determined by chlorophyll fluorescence imaging. Plant, Cell & Environment, 24, 947–955. doi:10.1046/j.0016-8025.2001.00737.x.

    Article  CAS  Google Scholar 

  • Nedbal, L., & Whitmarsh, J. (2004). Chlorophyll fluorescence imaging of leaves and fruits. In C. G. Papageorgiou & C. G. Govindjee (Eds.), Chlorophyll a fluorescence: A signature photosynthesis, pp. 389–407. Dordrecht: Springer.

    Google Scholar 

  • Nedbal, L., Soukupová, J., Kaftan, D., Whitmarsh, J., & Trtílek, M. (2000). Kinetic imaging of chlorophyll fluorescence using modulated light. Photosynthesis Research, 66, 3–12. doi:10.1023/A:1010729821876.

    Article  PubMed  CAS  Google Scholar 

  • Omasa, K., Shimazaki, K.-I., Aiga, I., Larcher, W., & Onoe, M. (1987). Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. Plant Physiology, 84, 748–752. doi:10.1104/pp. 84.3.748.

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou, C. G. & Govindjee (Eds.) (2004). Chlorophyll a fluorescence: A signature photosynthesis. Dordrecht: Springer

  • Polesani, M., Desario, F., Ferrarini, A., Zamboni, A., Pezzotti, M., Kortekamp, A., et al. (2008). cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. BMC Genomics, 9, 142. doi:10.1186/1471-2164-9-142.

    Article  PubMed  Google Scholar 

  • Pudil, P., Novovičová, J., & Kittler, J. (1994). Floating search methods in feature selection. Pattern Recognition Letters, 15, 1119–1125. doi:10.1016/0167-8655(94)90127-9.

    Article  Google Scholar 

  • Rodríguez-Moreno, L., Pineda, M., Soukupová, J., Macho, A. P., Beuzón, C. R., Barón, M., et al. (2008). Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging. Photosynthesis Research, 96, 27–35. doi:10.1007/s11120-007-9278-6.

    Article  PubMed  Google Scholar 

  • Roháček, K. (2002). Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40, 13–29. doi:10.1023/A:1020125719386.

    Article  Google Scholar 

  • Scharte, J., Schon, H., & Weis, E. (2005). Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant, Cell & Environment, 28, 1421–1435. doi:10.1111/j.1365-3040.2005.01380.x.

    Article  CAS  Google Scholar 

  • Scholes, J. D., & Rolfe, S. A. (1996). Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata): quantitative imaging of chlorophyll fluorescence. Planta, 199, 573–582. doi:10.1007/BF00195189.

    Article  CAS  Google Scholar 

  • Schreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10, 51–62. doi:10.1007/BF00024185.

    Article  CAS  Google Scholar 

  • Spera, G., La Torre, A., & Alegi, S. (2003). Organic viticulture: efficacy evaluation of different fungicides against Plasmopara viticola. Communications in Agricultural and Applied Biological Sciences, 68, 837–847.

    PubMed  CAS  Google Scholar 

  • Soukupová, J., Smatanová, S., Nedbal, L., & Jegorov, A. (2003). Plant response to destruxins visualized by imaging of chlorophyll fluorescence. Physiologia Plantarum, 118, 399–405. doi:10.1034/j.1399-3054.2003.00119.x.

    Article  Google Scholar 

  • Swarbrick, P. J., Schulze-Lefert, P., & Scholes, J. D. (2006). Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant, Cell & Environment, 29, 1061–1076. doi:10.1111/j.1365-3040.2005.01472.x.

    Article  CAS  Google Scholar 

  • Unger, S., Büche, C., Boso, S., & Kassemeyer, H.-H. (2007). The course of colonization of two different Vitis genotypes by Plasmopara viticola indicates compatible and incompatible host-pathogen interaction. Phytopathology, 97, 780–786. doi:10.1094/PHYTO-97-7-0780.

    Article  PubMed  Google Scholar 

  • Welter, L. J., Göktürk-Baydar, N., Akkurt, M., Maul, E., Eibach, R., Töpfer, R., et al. (2007). Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Molecular Breeding, 20, 359–374. doi:10.1007/s11032-007-9097-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants AV0Z60870520 (ISBE ASCR), 2B06068 (ISBE ASCR) and MSM6007665808 (IPB USB) awarded by the Academy of Sciences of the Czech Republic and Ministry of Education, Youth and Sports of the Czech Republic, and also funded by the Regional Administration of Friuli Venezia Giulia (Italy). The published data resulted also from preliminary experiments for the project 522/09/1565 funded by the Academy of Sciences of the Czech Republic. The authors thank Vítězslav Březina for advice in statistical analysis and Courtney Coleman for proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Cséfalvay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cséfalvay, L., Di Gaspero, G., Matouš, K. et al. Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging. Eur J Plant Pathol 125, 291–302 (2009). https://doi.org/10.1007/s10658-009-9482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9482-7

Keywords

Navigation