Skip to main content
Log in

Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Surface-sterilized seeds of two tomato cultivars (cv. K-25 and Sarvodya) were soaked in 100 μM CdCl2 for 8 h (shotgun approach). The resulting 59-day-old seedlings were sprayed with 10−8 M of 28-homobrassinolide (HBL) or 24-epibrassinolide (EBL) to their foliage. Both cultivars showed significantly different response to Cd stress. Cadmium severely restricted the growth, photosynthetic efficiency, and activity of nitrate reductase (E.C. 1.6.6.1) and carbonic anhydrase (E.C. 4.2.1.1) in Sarvodya as compared to K-25. However, the activities of antioxidative enzymes were significantly higher in K-25. This result may be considered an indication of better tolerance of the K-25 cultivars to Cd stress. Moreover, the spray of both the brassinosteroids (HBL/EBL) were found very effective in neutralizing the adverse effects generated by metals that reflect in better photosynthetic performance by the cultivars. An interesting aspect of this study is that HBL or EBL spray caused a further increase in proline content and antioxidative enzyme activities, which were already enhanced by Cd stress. This effect of brassinosteroids (HBL/EBL) was more pronounced in K-25 than in Sarvodya, representing the tolerance and adoptable behavior of K-25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam MM, Hayat S, Ali B, Ahmad A (2007) Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica 45:139–142

    Article  Google Scholar 

  • Ali B, Hayat S, Hasan SA, Ahmad A (2006) Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Sci Hort 110:267–273

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Ahmad A (2007) 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum). Environ Exp Bot 59:217–223

    Article  CAS  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiate L. Wilczek). Environ Exp Bot 62:153–159

    Article  CAS  Google Scholar 

  • Astolfi S, Zuch S, Passera C (2005) Effect of cadmium on H+-ATPase activity of plasma membrane vesicles isolated from roots of different S supplied maize (Zea mays L.) plants. Plant Sci 169:361–368

    Article  CAS  Google Scholar 

  • Bajguz A (2000) Effect of brassinosteroids on nucleic acid and protein content in cultured cell of Chlorella vulgaris. Plant Physiol Biochem 38:209–215

    Article  CAS  Google Scholar 

  • Balakhnina T, Kosobryukhov A, Ivanov A, Kreslavskii V (2005) The effect of cadmium on CO2 exchange, variable fluorescence of chlorophyll, and the level of antioxidant enzymes in pea leaves. Russian J Plant Physiol 52:15–20

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder CH (1990) Plant water relations are affected by heavy metal stress: a review. Plant Nutr 13:1–37

    Article  CAS  Google Scholar 

  • Baryle A, Crrier P, Franck F, Coulomb C, Sahut C, Havaux M (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium polluted soil: causes and consequences for photosynthesis and growth. Planta 212:696–709

    Article  Google Scholar 

  • Bates LS, Walden RT, Tearse ID (1973) Rapid determination of free proline for water stress studies. Plant and Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beauchamp LO, Fridovich I (1971) Superoxide dismutase improved assays applicable to acrylamide gels. Annals of Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Campbell HW (1999) Nitrate reductase structure, function and regulation bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Maehly AC (1956) Assay of catalase and peroxidase. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chugh LK, Gupta VK, Sawhney SK (1992) Effect of cadmium on enzymes of nitrogen metabolism in pea seedlings. Phytochem 31:395–400

    Article  CAS  Google Scholar 

  • Costa G, Morel JL (1994) Water relations, gas exchange and amino acid content in Cd-treated lettuce. Plant Physiol Biochem 32:561–570

    CAS  Google Scholar 

  • Cuin TA, Shabala S (2007) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environ 30:875–885

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi RS, Randhawa NS (1974) Evolution of a rapid test of the hidden hunger of zinc in plants. Plant Soil 40:445–451

    Article  CAS  Google Scholar 

  • Ekmekci Y, Tanyolac D, Beycan A (2008) Effects of cadmium on antioxidant enzymes and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol 165:600–611

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Pompeu GB, Gratas PL, Mazzafera P, Lea PJ, Azevedo RA (2006) Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Gouia H, Suzuki A, Brulferl J, Gharbal MH (2003) Effect of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. J Plant Physiol 160:367–376

    Article  CAS  PubMed  Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2006) Making the life of heavy metal stressed plants a little easier. Functional Plant Biol 32:481–494

    Article  Google Scholar 

  • Hernandez LE, Carpena-Ruiz R, Garate A (1996) Alteration mineral nutrition of pea seedlings exposed to cadmium. J Plant Nutr 19:1581–1598

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidant. Environ Poll 151:60–66

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2009) Screening of tomato (Lycopersicon esculentum) cultivars against cadmium through shotgun approach. J Plant Inter. 4:187–201

    Article  CAS  Google Scholar 

  • Hayat S, Ahmad A (2003) Brassinosteroids: bioactivity and crop productivity. Kluwer Academic, Dordrecht

    Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroids enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    Article  CAS  Google Scholar 

  • Hopkins WJ (1995) Introduction to plant physiology. Kluwer Academic, Dordrecht

    Google Scholar 

  • Jamali MK, Kazi TG, Arain MB, Afridi HI, Jalbani N, Memon AR (2007) Heavy metal content of vegetables grown in soil, irrigated with mixtures of wastewater and sewage sludge in Pakistan, using ultrasonic assisted pseudo-digestion. J Agron Crop Sci 193:218–228

    Article  CAS  Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:1274–1279

    Article  CAS  PubMed  Google Scholar 

  • Kamuro Y, Takatsuto S (1991) Practical application of brassinosteroids in agricultural fields. In: Sakurai A, Yokota T, Clouse SD (eds) Brassinosteroids: steroidal plant hormones. Springer, Tokyo, pp 223–241

    Google Scholar 

  • Kim HJ, Bracey MH, Barlett SG (1994) Nucleotide sequence of a gene encoding carbonic anhydrase in Arabidopsis thaliana. Plant Physiol 105:449–450

    Article  CAS  PubMed  Google Scholar 

  • Khripach VA, Zhabinskii VN, Groot AE (1999) Brassinosteroids: a new class of plant hormones. Academic, San Diego

    Google Scholar 

  • Khripach V, Zhabinskii V, De Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447

    Article  CAS  Google Scholar 

  • Khripach VA, Zhabinskii VN, Khripach NB (2003) New practical aspects of brassinosteroids and results of their 10 year agricultural use in Russia and Balarus. In: Hayat S, Ahmad A (eds) Brassinosteroids: bioactivity and crop productivity. Kluwer Academic, Dordrecht, pp 189–230

    Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann App Biol 150:1–26

    Article  CAS  Google Scholar 

  • Li L, van Staden J (1998) Effect of plant growth regulators on the antioxidative system in callus of two maize cultivars subjected to water stress. Plant Growth Regul 24:55–66

    Article  Google Scholar 

  • Liu Y, Wand X, Zeng G, Qui D, Gu J, Zhou M, Chau L (2007) Cadmium-induced oxidative stress and response of the ascorbate glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere 69:99–107

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Millan A-F, Sagardoy R, Solanas M, Abadia A, Abadia J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385

    Article  CAS  Google Scholar 

  • Moya JL, Ros R, Picazo I (1993) Influence of cadmium and nickel on growth net photosynthesis and carbohydrate distribution in rice plants. Photosynth res 36:75–80

    Article  CAS  Google Scholar 

  • Nunez M, Mazzateva P, Mazarra LM, Siqueira WJ, Zullo MAT (2003) Influence of brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol Plant 37:67–70

    Google Scholar 

  • Obata H, Inone N, Umebayshi M (1996) Effect of cadmium on plasma membrane ATPase from plant root differing in tolerance to cadmium. Soil Sci Plant Nutr 42:361–366

    CAS  Google Scholar 

  • Raghuramulu N, Nair MK, Kalyanasundarum S (1983) A manual of laboratory techniques. National Institute of Nutrition, Silver Prints, Hyderabad

    Google Scholar 

  • Ranganna S (1976) Manual of analysis of fruit and vegetables products. McGraw Hill, New Delhi, p 77

    Google Scholar 

  • Reddy MP, Vora AB (1986) Changes in pigment composition, hill reaction activity and saccharide metabolism in bajra (Pennisetum typhoides S&H) leaves under NaCl salinity. Photosynthetica 20:50–55

    CAS  Google Scholar 

  • Sadasivam S, Manickam A (1997) Carotenes. In: Sadasivam S, Manickam A (eds) Biochemical methods. New Age International, New Delhi, pp 187–188

    Google Scholar 

  • Sairam RR (1994) Effect of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress conditions of two wheat varieties. Plant Growth Regul 14:173–181

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Rio LC (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  PubMed  Google Scholar 

  • Sasse JM (2003) Physiological action of brassinosteroids: an update. J. Plant Growth Regul 22:276–288

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. Plants J Environ Biol 24:107–112

    CAS  Google Scholar 

  • Stobort AK, Griffits W, Bukhari I, Sherwood A (1985) The effect of Ca2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63:293–298

    Article  Google Scholar 

  • Tiryakioglue M, Eker S, Ozkutku F, Husted S, Lakmake I (2006) Antioxidant defense system and cadmium uptake in barley genotype differing in cadmium tolerance. J Trace Elem Mea Biol 20:181–190

    Article  Google Scholar 

  • Tiwari A, Kumar P, Singh S, Ansari SA (2005) Carbonic anhydrase in relation to higher plants. Photosynthetica 43:1–9

    Article  CAS  Google Scholar 

  • Tripathi BN, Gaur JP (2004) Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219:397–404

    Article  CAS  PubMed  Google Scholar 

  • Vardhini BV, Rao SSR (2002) Acceleration of ripening of tomato pericarp disc by brassinosteroids. Phytochem 16:843–847

    Article  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    Article  CAS  Google Scholar 

  • Wahid A, Ghani A, Ali I, Ashraf MY (2007) Effect of cadmium on carbon and nitrogen assimilation in shoots of mungbean [Vigna radiata (L.) Wilczek] seedlings. J Agron Crop Sci 193:357–365

    Article  CAS  Google Scholar 

  • Wang ME, Zhou QX (2006) Joint stress of chlorimuronethyl and cadmium on wheat Triticum aestivum at biochemical levels. Environ Pol 144:572–580

    Article  CAS  Google Scholar 

  • Yu JQ, Huag LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogues S (2004) A role of brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the anonymous reviewers for their valuable suggestions. This work was funded by University Grants Commission [Project No. 32-403/2006 (SR)], New Delhi, India.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamsul Hayat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayat, S., Hasan, S.A., Hayat, Q. et al. Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma 239, 3–14 (2010). https://doi.org/10.1007/s00709-009-0075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-009-0075-2

Keywords

Navigation