Skip to main content
Log in

Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Peroxiredoxins (Prx) are ubiquitous thiol-dependent peroxidases capable of reducing a broad range of toxic peroxides and peroxinitrites. A cysteinyl residue of peroxiredoxins reacts with the peroxides as primary catalytic center and oxidizes to sulfenic acid. The regeneration of the reduced form of Prx is required as a next step to allow its entry into next catalytic cycle. Several proteins, such as thioredoxin, glutaredoxin, cyclophilin, among others, are known to facilitate the regeneration of the reduced (catalytically active) form of Prx in plants. Based on the cysteine residues conserved in the deduced amino acid sequence and their catalytic mechanisms, four groups of peroxiredoxins have been distinguished in plants, namely, 1-Cys Prx, 2-Cys Prx, Type II Prx and Prx Q. Peroxiredoxins are known to play an important role in combating the reactive oxygen species generated at the level of electron transport activities in the plant exposed to different types of biotic and abiotic stresses. In addition to their role in antioxidant defense mechanisms in plants, they also modulate redox signaling during development and adaptation. Besides these general properties, peroxiredoxins have been shown to protect DNA from damage in vitro and in vivo. They also regulate metabolism in thylakoids and mitochondria. The present review summarizes the most updated information on the structure and catalysis of Prx and their functional importance in plant metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CDSP:

chloroplast drought-specific protein

CTC:

critical transition concentration

Cys:

cysteine

1-Cys Prx:

1-cysteine peroxiredoxin

2-Cys Prx:

2-cysteine peroxiredoxin

GSH:

reduced glutathioine

Grx:

glutaredoxin

MDHAR:

mono-dehydroascorbate reductase

NTR:

NADPH thioredoxin reductase

NTRC:

NADPH thioredoxin reductase C

Prx:

peroxiredoxin

Prx V:

peroxiredoxin V

Prx VI:

peroxiredoxin VI

Prx Q:

peroxiredoxin Q

PS:

photosystem

ROS:

reactive oxygen species

Trx:

thioredoxin

Type II Prx or Prx II:

type II peroxiredoxin

References

  • Aalen RB, Opsahl-Festad HG, Linnestad C, Olsen OA (1994) Transcripts encoding an oleosin and a dormancy-related protein are present in both the aleurone layer and the embryo of developing barley (Hordeum vulgare L.) seeds. Plant J 5:385–396. doi:10.1111/j.1365–313X.1994.00385.x

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philos Trans R Soc 355:1419–1430. doi:10.1098/rstb.2000.0703

    Article  CAS  Google Scholar 

  • Baier M, Dietz K-J (1996) Primary structure and expression of plant homologues of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroperoxide reductases. Plant Mol Biol 31:553–564. doi:10.1007/BF00042228

    Article  PubMed  CAS  Google Scholar 

  • Baier M, Dietz K-J (1997) The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants. Plant J 12:179–190. doi:10.1046/j.1365–313X.1997.12010179.x

    Article  PubMed  CAS  Google Scholar 

  • Baier M, Dietz K-J (1999) Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis: evidence from transgenic Arabidopsis thaliana. Plant Physiol 119:1407–1414. doi:10.1104/pp.119.4.1407

    Article  PubMed  CAS  Google Scholar 

  • Baier M, Noctor G, Foyer CH, Dietz K-J (2000) Antisense suppression of 2-Cys peroxiredoxin in Arabidopsis thaliana specifically enhances the activities and expression of enzymes associated with ascorbate metabolism, but not glutathione metabolism. Plant Physiol 124:823–832. doi:10.1104/pp.124.2.823

    Article  PubMed  CAS  Google Scholar 

  • Banmeyer I, Marchand C, Clipe A, Knoops B (2005) Human mitochondrial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxide. FEBS Lett 579:2327–2333. doi:10.1016/j.febslet.2005.03.027

    Article  PubMed  CAS  Google Scholar 

  • Barranco-Medina S, López-Jaramillo FJ, Bernier-Villamor L, Sevilla F, Lázaro JJ (2006) Cloning, overexpression, purification and preliminary crystallographic studies of a mitochondrial type II peroxiredoxin from Pisum sativum. Acta Crystall F 62:695–698. doi:10.1107/S1744309106023451

    Article  CAS  Google Scholar 

  • Barranco-Medina S, Krell T, Finkemeier I, Sevilla F, Lazaro JJ, Dietz K-J (2007) Biochemical and molecular characterization of the mitochondrial peroxiredoxin PsPrxII F from Pisum sativum. Plant Physiol Biochem 45:729–739. doi:10.1016/j.plaphy.2007.07.017

    Article  PubMed  CAS  Google Scholar 

  • Barranco-Medina S, Kakorin S, Lázaro JJ, Dietz K-J (2008) Thermodynamics of the dimer-decamer transition of reduced human and plant 2-Cys peroxiredoxin. Biochemistry 47:7196–7204. doi:10.1021/bi8002956

    Article  PubMed  CAS  Google Scholar 

  • Berberich T, Vebeler M, Feierabend J (1998) Cloning of cDNA encoding a thioredoxin peroxidase (PTx) homolog from winter rye (Secale cereale L.) (Accession no. AF076920). Plant Physiol Plant Gene Reg 118:98–167

    Google Scholar 

  • Brehelin C, Meyer EH, de Souris JP, Bonnard G, Meyer Y (2003) Resemblance and dissemblance of Arabidopsis type II peroxiredoxins: similar sequences for divergent gene expression, protein localization, and activity. Plant Physiol 132:2045–2057. doi:10.1104/pp.103.022533

    Article  PubMed  CAS  Google Scholar 

  • Chae HZ, Kim I-H, Kim K, Rhee SG (1993) Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 268:16815–16821

    PubMed  CAS  Google Scholar 

  • Chae HZ, Chung SJ, Rhee SG (1994) Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem 269:27670–27678

    PubMed  CAS  Google Scholar 

  • Chae HZ, Kang SW, Rhee SG (1999) Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol 300:219–226. doi:10.1016/S0076–6879(99)00128–7

    Article  PubMed  CAS  Google Scholar 

  • Cheong NE, Choi YO, Lee KO, Kim WY, Jung BG, Chi YH, Jeong JS, Kim K, Cho MJ, Lee SY (1999) Molecular cloning, expression, and functional characterization of a 2 Cys-peroxiredoxin in Chinese cabbage. Plant Mol Biol 40:825–834. doi:10.1023/A:1006271823973

    Article  PubMed  CAS  Google Scholar 

  • Choi HJ, Kang SW, Yang CH, Rhee SG, Ryu SE (1998) Crystal structure of a novel human peroxidase enzyme at 2.0 Å resolution. Nat Struct Biol 5:400–406. doi:10.1038/nsb0598–400

    Article  PubMed  CAS  Google Scholar 

  • Choi YO, Cheong NE, Lee KO, Jung BG, Hong CH, Jheong JH, Chi YM, Kim K, Cho MJ, Lee SY (1999) Cloning and expression of a new isotype of the peroxiredoxin gene of Chinese cabbage and its comparison to 2 Cys-peroxiredoxin isolated from the same plant. Biochem Biophys Res Commun 258:768–771. doi:10.1006/bbrc.1999.0714

    Article  PubMed  CAS  Google Scholar 

  • Collin V, Issakidis-Bourguet E, Marchand C, Hirasawa M, Lancelin JM, Knaff DB, Miginiac-Maslow M (2003) The Arabidopsis plastidial thioredoxins: new functions and new insights into specificity. J Biol Chem 278:23747–23752. doi:10.1074/jbc.M302077200

    Article  PubMed  CAS  Google Scholar 

  • Collin V, Lamkemeyer P, Miginiac-Maslow M, Hirasawa M, Knaff DB, Dietz K-J, Issakidis-Bourguet E (2004) Characterization of plastidial thioredoxins from Arabidopsis belonging to the new y-type. Plant Physiol 136:4088–4095. doi:10.1104/pp.104.052233

    Article  PubMed  CAS  Google Scholar 

  • Declercq JP, Evrard C, Clippe A, Vander Stricht D, Bernard A, Knoops B (2001) Crystal structure of human peroxiredoxin5, a novel type of mammalian peroxiredoxin at 1.5 Å resolution. J Mol Biol 311:751–759. doi:10.1006/jmbi.2001.4853

    Article  PubMed  CAS  Google Scholar 

  • Dietz K-J (2003) Plant peroxiredoxins. Annu Rev Plant Biol 54:93–107. doi:10.1146/annurev.arplant.54.031902.134934

    Article  PubMed  CAS  Google Scholar 

  • Dietz K-J, Horling F, Konig J, Baier M (2002) The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot 53:1321–1329. doi:10.1093/jexbot/53.372.1321

    Article  PubMed  CAS  Google Scholar 

  • Dietz K-J, Stork T, Finkemeier I, Lamkemeyer P, Li WX, El-Tayeb MA, Michel KP, Pistorius EK, Baier M (2005) The role of peroxiredoxins in oxygenic photosynthesis of cyanobacteria and higher plants: peroxide detoxification or redox sensing? In: Demmig-Adams B, Adams W, Mattoo A (eds) Photoprotection, photoinhibition, and environment. Kluwer, Dordrecht

    Google Scholar 

  • Dietz K-J, Jacob S, Oelze M, Laxa M, Tognetti V, NeMiranda SMN, Baier M, Finkmeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709. doi:10.1093/jxb/erj160

    Article  PubMed  CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297. doi:10.1146/annurev.arplant.53.100301.135248

    Article  PubMed  CAS  Google Scholar 

  • Finkemeier I, Goodman M, Lamkemeyer P, Kandlbinder A, Sweetlove LJ, Dietz K-J (2005) The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. J Biol Chem 280:12168–12180. doi:10.1074/jbc.M413189200

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146:359–388. doi:10.1046/j.1469–8137.2000.00667.x

    Article  CAS  Google Scholar 

  • Fujii J, Ikeda Y (2002) Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep 7:1–8. doi:10.1179/135100002125000352

    Article  CAS  Google Scholar 

  • Gama F, Keech O, Eymery F, Finkemeier I, Gelhaye E, Gardestrom P, Dietz K-J, Rey P, Jacquot J-P, Rouhier N (2007) The mitochondrial type II peroxiredoxin from poplar. Physiol Plant 129:196–206. doi:10.1111/j.1399–3054.2006.00785.x

    Article  CAS  Google Scholar 

  • Gama F, Bréhélin C, Gelhaye E, Meyer Y, Jacquot J-P, Rey P, Rouhier N (2008) Functional analysis and expression characteristics of chloroplastic PrxIIE. Physiol Plant 133:599–610. doi: 10.1111/j.1399-3054.2008.01097.x

    Google Scholar 

  • Goyer A, Haslekas C, Miginiac-Maslow M, Klein U, Le Marechal P, Jacquot J-P, Decottignies P (2002) Isolation and characterization of a thioredoxin-dependent peroxidase from Chlamydomonas reinhardtii. Eur J Biochem 269:272–282. doi:10.1046/j.0014–2956.2001.02648.x

    Article  PubMed  CAS  Google Scholar 

  • Haslekas C, Stacy RA, Nygaard V, Culianez-Macia FA, Aalen RB (1998) The expression of a peroxiredoxin antioxidant gene, AtPer1, in Arabidopsis thaliana is seed-specific and related to dormancy. Plant Mol Biol 36:833–845. doi:10.1023/A:1005900832440

    Article  PubMed  CAS  Google Scholar 

  • Hirotsu S, Abe Y, Okada K, Nigahara N, Hori H, Nishino T, Hakaoshina T (1999) Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proc Natl Acad Sci USA 96:12333–12338. doi:10.1073/pnas.96.22.12333

    Article  PubMed  CAS  Google Scholar 

  • Hofmann B, Hecht HJ, Flohe L (2002) Peroxiredoxins. Biol Chem 383:347–364. doi:10.1515/BC.2002.040

    Article  PubMed  CAS  Google Scholar 

  • Horling F, Baier M, Dietz KJ (2001) Redox-regulation of the expression of the peroxide-detoxifying chloroplast 2-cys peroxiredoxin in the liverwort Riccia fluitans. Planta 214:304–313

    Article  PubMed  CAS  Google Scholar 

  • Horling F, Konig J, Dietz K-J (2002) Type II peroxiredoxin C, a member of the peroxiredoxin family of Arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins. Plant Physiol Biochem 40:491–499. doi:10.1016/S0981–9428(02)01396–7

    Article  CAS  Google Scholar 

  • Horling F, Lamkemeyer P, Konig J, Finkemeier I, Kandlbinder A, Baier M, Dietz K-J (2003) Divergent light-, ascorbate- and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131:317–325. doi:10.1104/pp.010017

    Article  PubMed  CAS  Google Scholar 

  • Hosoya-Matsuda N, Motohashi K, Yoshimura H, Nozaki A, Inoue K, Ohmori M, Hisabori T (2005) Anti-oxidative stress system in cyanobacteria. Significance of type II peroxiredoxin and the role of 1-Cys peroxiredoxin in Synechocystis sp. strain PCC 6803. J Biol Chem 280:840–846

    PubMed  CAS  Google Scholar 

  • Jacob J, Lawlor DW (1993) Extreme phosphate deficiency decreases the in vivo CO2/O2 specificity factor of ribulose 1,5-bisphosphate carboxylase-oxygenase in intact leaves of sunflower. J Exp Bot 44:1635–1641. doi:10.1093/jxb/44.11.1635

    Article  CAS  Google Scholar 

  • Jeong JS, Kwon SJ, Kang SW, Rhee SG, Kim K (1999) Purification and characterization of a second type thioredoxin peroxidase (Type II TPx) from Saccharomyces cerevisiae. Biochemistry 38:776–783. doi:10.1021/bi9817818

    Article  PubMed  CAS  Google Scholar 

  • Kandlbinder A, Finkemeier I, Wormuth D, Hanitzsch M, Dietz K-J (2004) The antioxidant status of photosynthesizing leaves under nutrient deficiency: redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana. Physiol Plant 120:63–73. doi:10.1111/j.0031–9317.2004.0272.x

    Article  PubMed  CAS  Google Scholar 

  • Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, Rhee SG (1998) Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 273:6297–6302. doi:10.1074/jbc.273.11.6297

    Article  PubMed  CAS  Google Scholar 

  • Kiba A, Nishihara M, Tsukatani N, Nakatsuka T, Kato Y, Yamamura S (2005) A peroxiredoxin Q homolog from gentians is involved in both resistance against fungal disease and oxidative stress. Plant Cell Physiol 46:1007–1015. doi:10.1093/pcp/pci109

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER (1988) The isolation and purification of a specific ‘protector’ protein which inhibits enzyme inactivation by thiol/Fe (III)/O2 mixed function oxidation system. J Biol Chem 263:4704–4711

    PubMed  CAS  Google Scholar 

  • Kingston-Smith AH, Foyer CH (2000) Bundle sheath proteins are more sensitive to oxidative damage than those of the mesophyll in maize leaves exposed to paraquat or low temperatures. J Exp Bot 51:123–130. doi:10.1093/jexbot/51.342.123

    Article  PubMed  CAS  Google Scholar 

  • Klughammer B, Baier M, Dietz K-J (1998) Inactivation by gene disruption of 2-Cysteine peroxiredoxin in Synechocystis sp. PCC 6803 leads to increased stress sensitivity. Physiol Plant 104:699–706. doi:10.1034/j.1399–3054.1998.1040426.x

    Article  CAS  Google Scholar 

  • Knoops B, Clippe A, Bogard C, Arsalane K, Wattiez R, Hermans C, Duconsielle E, Falmagne P, Bernard A (1999) Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J Biol Chem 274:30451–30458. doi:10.1074/jbc.274.43.30451

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Ishizuka T, Katayama M, Kanehisa M, Bhattacharyya-Pakrasi M, Pakrasi HB, Ikeuchi M (2004) Response to oxidative stress involves a novel peroxiredoxin gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 45:290–299. doi:10.1093/pcp/pch034

    Article  PubMed  CAS  Google Scholar 

  • Kong W, Shiota S, Shi Y, Nakayama H, Nakayama K (2000) A novel peroxiredoxin of the plant Sedum lineare is a homologue of Escherichia coli bacterioferritin co-migratory protein (Bcp). Biochem J 351:107–114. doi:10.1042/0264–6021:3510107

    Article  PubMed  CAS  Google Scholar 

  • Konig J, Baier M, Horling F, Kahmann U, Harris G, Schurmann P, Dietz K-J (2002) The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc Natl Acad Sci USA 99:5738–5743. doi:10.1073/pnas.072644999

    Article  PubMed  CAS  Google Scholar 

  • Konig J, Lotte K, Plessow R, Brockhinke A, Baier M, Dietz K-J (2003) Reaction mechanism of plant 2-Cys peroxiredoxin- Role of the C terminus and the quaternary structure. J Biol Chem 278:24409–24420. doi:10.1074/jbc.M301145200

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Tewari RK, Sharma PN (2008) Modulation of copper toxicity-induced oxidative damage by excess supply of iron in maize plants. Plant Cell Rep 27:399–409. doi:10.1007/s00299–007–0453–1

    Article  PubMed  CAS  Google Scholar 

  • Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schottler MA, Holtkamp V, Tongetti VB, Issakidis-Bourgnet E, Kandlbinder A, Weis E, Miginac-Maslow M, Dietz K-J (2006) Prx Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant J 45:968–981. doi:10.1111/j.1365–313X.2006.02665.x

    Article  PubMed  CAS  Google Scholar 

  • Laxa M, König J, Dietz K-J, Kandlbinder A (2007) Role of the cysteine residues in Arabidopsis thaliana cyclophilin CYP20–3 in peptidyl-prolyl cis-trans isomerase and redox-related functions. Biochem J 401:287–297. doi:10.1042/BJ20061092

    Article  PubMed  CAS  Google Scholar 

  • Lee SP, Hwang YS, Kim YJ, Kwon KS, Kim HJ, Kim K, Chae HZ (2001) Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity. J Biol Chem 276:29826–29832. doi:10.1074/jbc.M101822200

    Article  PubMed  CAS  Google Scholar 

  • Lewis ML, Miki K, Ueda T (2000) FePER1, a gene encoding an evolutionary conserved 1-Cys peroxiredoxin in buckwheat (Fagopyrum esculentum Moench), is expressed in a seed-specific manner and induced during seed germination. Gene 246:81–91. doi:10.1016/S0378–1119(00)00045–7

    Article  PubMed  CAS  Google Scholar 

  • Majeran W, Cai Y, Sun Q, van Wijk KJ (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17:3111–3140. doi:10.1105/tpc.105.035519

    Article  PubMed  CAS  Google Scholar 

  • Majoul T, Chahed K, Zamiti E, Ouelhazi L, Ghrir R (2000) Analysis by two-dimensional electrophoresis of the effect of salt stress on the polypeptide patterns in roots of a salt-tolerant and a salt-sensitive cultivar of wheat. Electrophoresis 21:2562–2565. doi:10.1002/1522–2683(20000701)21:12<2562::AID-ELPS2562>3.0.CO;2–2

    Article  PubMed  CAS  Google Scholar 

  • Motohashi K, Kondoh A, Stumpp MT, Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA 98:11224–11229. doi:10.1073/pnas.191282098

    Article  PubMed  CAS  Google Scholar 

  • Mowla SB, Thomson JA, Farrant JM, Mundree SG (2002) A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker. Planta 215:716–726. doi:10.1007/s00425–002–0819–0

    Article  PubMed  CAS  Google Scholar 

  • Naumann B, Busch A, Allmer J, Ostendorf E, Zeller M, Kirchhoff H, Hippler M (2007) Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Proteomics 21:3964–3979. doi:10.1002/pmic.200700407

    Article  CAS  Google Scholar 

  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot J-P, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379. doi:10.1104/pp.106.089458

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Veljovic-Jovanovics, Foyer CH (2000) Peroxide processing in photosynthesis: antioxidant coupling and redox signaling. Philos Trans R Soc Lond Ser B 355:1465–1475. doi:10.1098/rstb.2000.0707

    Article  CAS  Google Scholar 

  • Pedrajas JR, Miranda-Vizuete A, Javanmardy N, Gustafsson JA, Spyrou G (2000) Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin wiyh thioredoxin peroxidase activity. J Biol Chem 275:16296–16301. doi:10.1074/jbc.275.21.16296

    Article  PubMed  CAS  Google Scholar 

  • Pena-Ahumada A, Kahmann U, Dietz K-J, Baier M (2006) Regulation of peroxiredoxin expression versus expression of Halliwell-Asada-Cycle enzymes during early seedling development of Arabidopsis thaliana. Photosynth Res 89:99–112. doi:10.1007/s11120–006–9087–3

    Article  PubMed  CAS  Google Scholar 

  • Perelman A, Uzan A, Hacohen D, Schwarz R (2003) Oxidative stress in Synechococcus sp. strain PCC 7942: various mechanisms for H2O2 detoxification with different physiological roles. J Bacteriol 185:3654–3660. doi:10.1128/JB.185.12.3654–3660.2003

    Article  PubMed  CAS  Google Scholar 

  • Perez-Ruiz JM, Spinola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ (2006) Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Plant Cell 18:2356–2368. doi:10.1105/tpc.106.041541

    Article  PubMed  CAS  Google Scholar 

  • Petersson UA, Kieselbach T, Garcia-Cerdan JG, Schroder WP (2006) The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome. FEBS Lett 580:6055–6061. doi:10.1016/j.febslet.2006.10.001

    Article  PubMed  CAS  Google Scholar 

  • Pulido P, Cazalis R, Cejudo FJ (2009) An antioxidant redox system in the nucleus of wheat seed cells suffering oxidative stress. Plant J 57:132–145. doi:10.1111/j.1365–313X.2008.03675.x

    Article  PubMed  CAS  Google Scholar 

  • Rabilloud T, Heller M, Gasnier F, Luche S, Rey C, Aebersold R, Benahmed M, Louisot P, Lunardi J (2002) Proteomics analysis of cellular response to oxidative stress. J Biol Chem 277:19396–19401. doi:10.1074/jbc.M106585200

    Article  PubMed  CAS  Google Scholar 

  • Rey P, Becuwe N, Barrault M-B, Rumean D, Havanx M, Biteau B, Toledano MB (2007) The Arabidopsis thaliana sulfiredoxin is a plastidic cysteine-sulfinic acid reductase involved in the photooxidative stress response. Plant J 49:505–514. doi:10.1111/j.1365–313X.2006.02969.x

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Laxa M, Mattè A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz K-J, Delledonne M (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19:4120–4130. doi:10.1105/tpc.107.055061

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Jacquot J-P (2002) Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes. Photosynth Res 74:259–268. doi:10.1023/A:1021218932260

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Gualberto JM, Jordy M-N, De Fay E, Hirasawa M, Duplessis S, Lemaire SD, Frey P, Martin F, Manieri W, Knaff DB, Jacquot J-P (2004) Poplar peroxiredoxin Q: a thioredoxin-linked chloroplast antioxidant functional in pathogen defense. Plant Physiol 134:1027–1038. doi:10.1104/pp.103.035865

    Article  PubMed  CAS  Google Scholar 

  • Schröder E, Littlechild JA, Lebedev AA, Errington N, Vagin AA, Isupov MN (2000) Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A° resolution. Structure 8:605–615. doi:10.1016/S0969–2126(00)00147–7

    Article  PubMed  Google Scholar 

  • Schwarz R, Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emerge of a complex network of cellular responses. Mol Microbiol 151:2503–2514

    CAS  Google Scholar 

  • Seo MS, Kang SW, Kim K, Baines IC, Lee TH, Rhee SG (2000) Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem 275:20346–20354. doi:10.1074/jbc.M001943200

    Article  PubMed  CAS  Google Scholar 

  • Serrato AJ, Pérez-Ruiz JM, Spínola MC, Cejudo FJ (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J Biol Chem 279:43821–43827. doi:10.1074/jbc.M404696200

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Takeda T, Yamauchi H, Sano S, Tomizawa KI, Yakota A, Shigeoka S (1998) Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett 428:47–51. doi:10.1016/S0014–5793(98)00483–9

    Article  PubMed  CAS  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101:8827–8832. doi:10.1073/pnas.0401707101

    Article  PubMed  CAS  Google Scholar 

  • Stacy RA, Munthe E, Steinum T, Sharma B, Aalen RB (1996) A peroxiredoxin antioxidant is encoded by a dormancy-related gene, Per1, expressed during late development in the aleurone and embryo of barley grains. Plant Mol Biol 31:1205–1216. doi:10.1007/BF00040837

    Article  PubMed  CAS  Google Scholar 

  • Stacy RA, Nordeng TW, Culianez-Macia FA, Aalen RB (1999) The dormancy-related peroxiredoxin anti-oxidant, PER 1, is localized to the nucleus of barley embryo and aleurone cells. Plant J 19:1–8. doi:10.1046/j.1365–313X.1999.00488.x

    Article  PubMed  CAS  Google Scholar 

  • Stork T, Michel KP, Pistorius E, Dietz K-J (2005) Bioinformatic analysis of the genomes of the cyanobacteria Synechocystis sp. PCC 6803 and Synechocystis elongatus PCC 7942 for the presence of peroxiredoxins and the transcript regulation under stress. J Exp Bot 56:3193–3206. doi:10.1093/jxb/eri316

    Article  PubMed  CAS  Google Scholar 

  • Storz G, Jacobson FS, Tartaglia LA, Morgan RW, Silveira LA, Ames BN (1989) An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. J Bacteriol 171:2049–2055

    PubMed  CAS  Google Scholar 

  • Tewari RK, Kumar P, Neetu, Sharma PN (2005) Signs of oxidative stress in the chlorotic leaves of iron starved plants. Plant Sci 169:1037–1045. doi:10.1016/j.plantsci.2005.06.006

    Article  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2006) Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145–1153. doi:10.1007/s00425–005–0160–5

    Article  PubMed  CAS  Google Scholar 

  • Tripathi BN, Gaur JP (2004) Relationship between copper- and zinc- induced oxidative stress and proline accumulation in Scenedesmus sp. Planta 219:397–404. doi:10.1007/s00425–004–1237–2

    Article  PubMed  CAS  Google Scholar 

  • Tripathi BN, Mehta SK, Amar A, Gaur JP (2006) Oxidative stress in Scenedesmus sp. during short- and long term exposure to Cu and Zn. Chemosphere 62:538–544. doi:10.1016/j.chemosphere.2005.06.031

    Article  PubMed  CAS  Google Scholar 

  • Verdoucq L, Vignol F, Jacquot J-P, Chartier Y, Meyer Y (1999) In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J Biol Chem 274:19714–19722. doi:10.1074/jbc.274.28.19714

    Article  PubMed  CAS  Google Scholar 

  • Wood ZA, Poole LB, Karplus PA (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300:650–653. doi:10.1126/science.1080405

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Miyake C, Dietz K-J, Tomizawa KI, Murata N, Yokota A (1999) Thioredoxin peroxidase in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 447:269–273. doi:10.1016/S0014–5793(99)00309–9

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Kok KH, Chun ACS, Wong C-M, Wu HW, Lin MCM, Fung PCW, Kung H-F, Jin D-Y (2000) Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53 induced apoptosis. Biochem Biophys Res Commun 268:921–927. doi:10.1006/bbrc.2000.2231

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

BNT thanks Department of Biotechnology, New Delhi for financial assistance in form of Associateship for advanced training in the area of Biotechnology in the laboratory of KJ Dietz, Bielefeld University, Germany. The support from Professor Aditya Shastri, Vice-Chancellor, Banasthali University is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhumi Nath Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, B.N., Bhatt, I. & Dietz, KJ. Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma 235, 3–15 (2009). https://doi.org/10.1007/s00709-009-0032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-009-0032-0

Keywords

Navigation