Skip to main content
Log in

Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The aim of the study was to implicate the generation of reactive oxygen species (ROS) and altered cellular redox environment with the effects of Cu-deficiency or Cu-excess in mulberry (Morus alba L.) cv. Kanva 2 plants. A study of antioxidative responses, indicators of oxidative damage and cellular redox environment in Cu-deficient or Cu-excess mulberry plants was undertaken. While the young leaves of plants supplied with nil Cu showed chlorosis and necrotic scorching of laminae, the older and middle leaves of plants supplied with nil or 0.1 μM Cu showed purplish-brown pigmented interveinal areas that later turned necrotic along the apices and margins of leaves. The Cu-excess plants showed accelerated senescence of the older leaves. The Cu-deficient plants showed accumulation of hydrogen peroxide and superoxide anion radical. The accumulation of hydrogen peroxide was strikingly intense in the middle portion of trichomes on Cu-deficient leaves. Though the concentration of total ascorbate increased with the increasing supply of Cu, the ratio of the redox couple (DHA/ascorbic acid) increased in Cu-deficient or Cu-excess plants. The activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) increased in both Cu-deficient and Cu-excess plants. The results suggest that deficiency of Cu aggravates oxidative stress through enhanced generation of ROS and disturbed redox couple. Excess of Cu damaged roots, accelerated the rate of senescence in the older leaves, induced antioxidant responses and disturbed the cellular redox environment in the young leaves of mulberry plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AsA:

Ascorbic acid

ASC:

Total ascorbate

APX:

Ascorbate peroxidase

CAT:

Catalase

DTT:

Dithiothreitol

EDTA:

Ethylenediamine tetraacetic acid

GR:

Glutathione reductase

MDA:

Malondialdehyde

POD:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TCA:

Trichloroacetic acid

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–379

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Bisht SS, Sharma A, Chaturvedi K (1989) Certain metabolic lesions of chromium toxicity in radish. Indian J Agric Biochem 2:109–115

    CAS  Google Scholar 

  • Bouché N, Fait A, Bouchez D, Møller SG, Fromm H (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci USA 100:6843–6848

    Article  PubMed  CAS  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in regulation of senescence in pear. Plant Physiol 59:411–416

    PubMed  CAS  Google Scholar 

  • Brown JC (1979) Role of calcium in micronutrient stresses of plants. Commun Soil Sci Plant Anal 10:459–472

    CAS  Google Scholar 

  • Drążkiewicz M, Skórzynśka-Polit E, Krupa Z (2003) Response of ascorbate-glutathione cycle to excess copper in Arabidopsis thaliana (L). Plant Sci 164:195–202

    Article  Google Scholar 

  • Droppa M, Terry N, Horvath G (1984) Effects of Cu deficiency on photosynthetic electron transport. Proc Natl Acad Sci USA 81:2369–2373

    Article  PubMed  CAS  Google Scholar 

  • Gupta M, Cuypers A, Vangronsveld J, Clijsters H (1999) Copper affects the enzymes of ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiol Plant 106:262–267

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast, I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:180–198

    Google Scholar 

  • Henriques FS (1989) Effect of copper deficiency on photosynthetic apparatus of sugar beet (Beta vulgaris L.). J Plant Physiol 135:453–458

    CAS  Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O ·−2 /H2O2 production in the apoplast of pea leaves, its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    Article  PubMed  Google Scholar 

  • Hewitt EJ (1963) The essential nutrient elements: requirements and interactions in plants. In: Steward FC (ed) Plant physiology, vol III. Inorganic nutrition of plants. Academic, London, pp 137–360

    Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureaux, Farnham Royl. Bucks

  • Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotech 6:153–158

    Article  Google Scholar 

  • Jablonski PP, Anderson JW (1978) Light-dependent reduction of oxidised glutathione by ruptured chloroplasts. Plant Physiol 61:221–225

    Article  PubMed  CAS  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem J 210:899–903

    PubMed  CAS  Google Scholar 

  • Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168:797–802

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Morelli E, Scarano G (2004) Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Sci 167:289–296

    Article  CAS  Google Scholar 

  • Murao K, Takamiya M, Ono K, Takano H, Takio S (2004) Copper deficiency induced expression of Fe-superoxide dismutase gene in Matteuccia struthiopteris. Plant Physiol Biochem 42:143–148

    Article  PubMed  CAS  Google Scholar 

  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Navari-Izzo F, Quartacci MF, Pinzino C, Dalla Vecchia F, Sgherri CLM.(1998) Thylakoid-bound and stromal enzymes in wheat treated with excess copper. Physiol Plant 104:630–638

    Article  CAS  Google Scholar 

  • Paciolla C, De Tullio MC, Chiappetta A, Innocenti AM, Bitonti MB, Liso R, Arrigoni O (2001) Short- and long-term effects of dehydroascorbate in Lupinus albus and Allium cepa roots. Plant Cell Physiol 42:587–863

    Article  Google Scholar 

  • Pätsikkä E, Kairavuo M, Šeršen F, Aro E-M, Tyystjärvi E (2002) Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. Plant Physiol 129:1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipid and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    Article  PubMed  CAS  Google Scholar 

  • Raeymaekers T, Potters G, Asard H, Guisez Y, Horemans N (2003) Copper-mediated oxidative burst in Nicotiana tabacum L. cv. Bright Yellow 2 cell suspension cultures. Protoplasma 221:93–100

    Article  PubMed  CAS  Google Scholar 

  • Reuther W, Labanauskas CK (1966) Copper. In: Chapman HD (ed) Diagnostic criteria for plants and soils. Division of Agricultural Sciences, University of California, California, pp 157–179

    Google Scholar 

  • Sandmann G (1985) Photosynthetic and respiratory electron transport in copper (2+)-deficient Dunaliella. Physiol Plant 65:481–486

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stress: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Sharma CP, Sharma PN (1985) Copper deficiency effects on water relations of cabbage. J Indian Bot Soc 64:278–280

    Google Scholar 

  • Sharma PN, Kumar P, Tewari RK (2004) Early signs of oxidative stress in wheat plants subjected to zinc deficiency. J Plant Nutr 27:449–461

    Article  CAS  Google Scholar 

  • Shingles R, Wimmers LE, McCarty RE (2004) Copper transport across pea thylakoid membranes. Plant Physiol 135:145–151

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Suh Y-A, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D, Chung AB, Griendling KK, Lambeth JD (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401:79–82

    Article  PubMed  CAS  Google Scholar 

  • Teisseire H, Guy V (2000) Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Sci 153:65–72

    Article  CAS  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1996) Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant 96:506–512

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parma Nand Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewari, R.K., Kumar, P. & Sharma, P.N. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223, 1145–1153 (2006). https://doi.org/10.1007/s00425-005-0160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0160-5

Keywords

Navigation