Skip to main content
Log in

Weak-form differential quadrature finite elements for functionally graded micro-beams with strain gradient effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper proposes weak-form differential quadrature finite elements for strain gradient functionally graded (FG) Euler–Bernoulli and Timoshenko micro-beams. The elements developed both have six degrees of freedom per node and do not require shape functions. The effective material properties are assumed to change continuously along the thickness direction. To guarantee the inter-element continuity conditions, we construct sixth- and fourth-order differential quadrature-based geometric mapping schemes. The two mapping schemes are combined with the minimum potential energy principle to derive their respective element formulations. Several illustrative examples are presented to demonstrate the convergence and adaptability of our elements. Finally, we utilize the latter element to explore the size-dependent vibration characteristics of multiple-stepped FG micro-beams. Numerical results reveal that our elements have distinct convergence and adaptability advantages over the related standard finite elements. The step location, thickness ratio, power-law index, and material length scale parameter have notable impacts on the structural vibration frequencies and mode shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Koizumi, M.: FGM activities in Japan. Compos. B Eng. 28(1), 1–4 (1997)

    Article  Google Scholar 

  2. Thai, H.-T., Kim, S.-E.: A review of theories for the modeling and analysis of functionally graded plates and shells. Compos. Struct. 128, 70–86 (2015)

    Article  Google Scholar 

  3. Pradhan, K., Chakraverty, S.: Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method. Compos. B Eng. 51, 175–184 (2013)

    Article  Google Scholar 

  4. Su, Z., Jin, G., Ye, T.: Vibration analysis of multiple-stepped functionally graded beams with general boundary conditions. Compos. Struct. 186, 315–323 (2018)

    Article  Google Scholar 

  5. Filippi, M., Carrera, E., Zenkour, A.: Static analyses of FGM beams by various theories and finite elements. Compos. B Eng. 72, 1–9 (2015)

    Article  Google Scholar 

  6. Alshorbagy, A.E., Eltaher, M., Mahmoud, F.: Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model. 35(1), 412–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mao, Q.: Free vibration analysis of multiple-stepped beams by using Adomian decomposition method. Math. Comput. Model. 54(1–2), 756–764 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Amoozgar, M., Shahverdi, H.: Analysis of nonlinear fully intrinsic equations of geometrically exact beams using generalized differential quadrature method. Acta Mech. 227(5), 1265–1277 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, X., Wang, Y.: Free vibration analysis of multiple-stepped beams by the differential quadrature element method. Appl. Math. Comput. 219(11), 5802–5810 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Jin, C., Wang, X.: Accurate free vibration analysis of Euler functionally graded beams by the weak form quadrature element method. Compos. Struct. 125, 41–50 (2015)

    Article  Google Scholar 

  11. Su, H., Banerjee, J.: Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams. Comput. Struct. 147, 107–116 (2015)

    Article  Google Scholar 

  12. Lee, J.W., Lee, J.Y.: Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression. Int. J. Mech. Sci. 122, 1–17 (2017)

    Article  Google Scholar 

  13. Banerjee, J., Ananthapuvirajah, A.: Free vibration of functionally graded beams and frameworks using the dynamic stiffness method. J. Sound Vib. 422, 34–47 (2018)

    Article  Google Scholar 

  14. Witvrouw, A., Mehta, A.: The use of functionally graded poly-SiGe layers for MEMS applications. Mater. Sci. Forum 8, 255–260 (2005)

    Article  Google Scholar 

  15. Ghayesh, M.H., Farajpour, A.: A review on the mechanics of functionally graded nanoscale and microscale structures. Int. J. Eng. Sci. 137, 8–36 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  17. Lei, J., He, Y., Guo, S., Li, Z., Liu, D.: Size-dependent vibration of nickel cantilever microbeams: Experiment and gradient elasticity. AIP Adv. 6(10), 105202 (2016)

    Article  Google Scholar 

  18. Li, Z., He, Y., Lei, J., Guo, S., Liu, D., Wang, L.: A standard experimental method for determining the material length scale based on modified couple stress theory. Int. J. Mech. Sci. 141, 198–205 (2018)

    Article  Google Scholar 

  19. Li, Z., He, Y., Zhang, B., Lei, J., Guo, S., Liu, D.: Experimental investigation and theoretical modelling on nonlinear dynamics of cantilevered microbeams. Eur. J. Mech. A-Solids 78, 103834 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  21. Liu, D., He, Y., Tang, X., Ding, H., Hu, P., Cao, P.: Size effects in the torsion of microscale copper wires: experiment and analysis. Scripta Mater. 66(6), 406–409 (2012)

    Article  Google Scholar 

  22. Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, F., Chong, A., Lam, D.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  24. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)

    Article  Google Scholar 

  25. Mindlin, R., Eshel, N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  MATH  Google Scholar 

  26. Cordero, N.M., Forest, S., Busso, E.P.: Second strain gradient elasticity of nano-objects. J. Mech. Phys. Solids 97, 92–124 (2016)

    Article  MathSciNet  Google Scholar 

  27. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  28. Farokhi, H., Ghayesh, M.H.: Modified couple stress theory in orthogonal curvilinear coordinates. Acta Mech. 230(3), 851–869 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ansari, R., Gholami, R., Sahmani, S.: Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos. Struct. 94(1), 221–228 (2011)

    Article  Google Scholar 

  30. Şimşek, M., Reddy, J.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, B., He, Y., Liu, D., Gan, Z., Shen, L.: A novel size-dependent functionally graded curved mircobeam model based on the strain gradient elasticity theory. Compos. Struct. 106, 374–392 (2013)

    Article  Google Scholar 

  32. Zhang, B., He, Y., Liu, D., Gan, Z., Shen, L.: Size-dependent functionally graded beam model based on an improved third-order shear deformation theory. Eur. J. Mech. A-Solids 47, 211–230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Farokhi, H., Ghayesh, M.H., Gholipour, A.: Dynamics of functionally graded micro-cantilevers. Int. J. Eng. Sci. 115, 117–130 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, G.Y., Gao, X.L.: A non-classical Kirchhoff rod model based on the modified couple stress theory. Acta Mech. 230(1), 243–264 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Radgolchin, M., Moeenfard, H.: Size-dependent nonlinear vibration analysis of shear deformable microarches using strain gradient theory. Acta Mech. 229(7), 3025–3049 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ji, X., Li, A.Q., Gao, Q.: The comparison of strain gradient effects for each component in static and dynamic analyses of FGM micro-beams. Acta Mech. 229(9), 3885–3899 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jiang, J., Wang, L.: Analytical solutions for the thermal vibration of strain gradient beams with elastic boundary conditions. Acta Mech. 229(5), 2203–2219 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, B., Shen, H., Liu, J., Wang, Y., Zhang, Y.: Deep postbuckling and nonlinear bending behaviors of nanobeams with nonlocal and strain gradient effects. Appl. Math. Mech. 40(4), 515–548 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bahreman, M., Darijani, H., Fard, A.B.: The size-dependent analysis of microplates via a newly developed shear deformation theory. Acta Mech. 230(1), 49–65 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, B., Zhou, S., Zhao, J., Chen, X.: A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur. J. Mech. A-Solids 30(4), 517–524 (2011)

    Article  MATH  Google Scholar 

  41. Reddy, J., Kim, J.: A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos. Struct. 94(3), 1128–1143 (2012)

    Article  Google Scholar 

  42. Zhang, B., He, Y., Liu, D., Lei, J., Shen, L., Wang, L.: A size-dependent third-order shear deformable plate model incorporating strain gradient effects for mechanical analysis of functionally graded circular/annular microplates. Compos. B Eng. 79, 553–580 (2015)

    Article  Google Scholar 

  43. Lei, J., He, Y., Zhang, B., Liu, D., Shen, L., Guo, S.: A size-dependent FG micro-plate model incorporating higher-order shear and normal deformation effects based on a modified couple stress theory. Int. J. Mech. Sci. 104, 8–23 (2015)

    Article  Google Scholar 

  44. Zhang, B., He, Y., Liu, D., Shen, L., Lei, J.: An efficient size-dependent plate theory for bending, buckling and free vibration analyses of functionally graded microplates resting on elastic foundation. Appl. Math. Model. 39(13), 3814–3845 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Akgöz, B.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226(7), 2277–2294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mirsalehi, M., Azhari, M., Amoushahi, H.: Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method. Eur. J. Mech. A-Solids 61, 1–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Salehipour, H., Nahvi, H., Shahidi, A., Mirdamadi, H.R.: 3D elasticity analytical solution for bending of FG micro/nanoplates resting on elastic foundation using modified couple stress theory. Appl. Math. Model. 47, 174–188 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Thai, C.H., Ferreira, A., Phung-Van, P.: Size dependent free vibration analysis of multilayer functionally graded GPLRC microplates based on modified strain gradient theory. Compos. Part B: Eng. 169, 174–188 (2019)

    Article  Google Scholar 

  49. Thai, H.-T., Vo, T.P., Nguyen, T.-K., Kim, S.-E.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)

    Article  Google Scholar 

  50. Kahrobaiyan, M., Asghari, M., Ahmadian, M.: Strain gradient beam element. Finite Elem. Anal. Des. 68, 63–75 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, B., He, Y., Liu, D., Gan, Z., Shen, L.: A non-classical Mindlin plate finite element based on a modified couple stress theory. Eur. J. Mech. A-Solids 42, 63–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, B., He, Y., Liu, D., Gan, Z., Shen, L.: Non-classical Timoshenko beam element based on the strain gradient elasticity theory. Finite Elem. Anal. Des. 79, 22–39 (2014)

    Article  MathSciNet  Google Scholar 

  53. Kim, J., Reddy, J.N.: A general third-order theory of functionally graded plates with modified couple stress effect and the von Kármán nonlinearity: theory and finite element analysis. Acta Mech. 226(9), 2973–2998 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kahrobaiyan, M.H., Asghari, M., Ahmadian, M.T.: A strain gradient Timoshenko beam element: application to MEMS. Acta Mech. 226(2), 505–525 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Karttunen, A.T., Romanoff, J., Reddy, J.: Exact microstructure-dependent Timoshenko beam element. Int. J. Mech. Sci. 111–112, 35–42 (2016)

    Article  Google Scholar 

  56. Beheshti, A.: Finite element analysis of plane strain solids in strain-gradient elasticity. Acta Mech. 228(10), 3543–3559 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kwon, Y.-R., Lee, B.-C.: A mixed element based on Lagrange multiplier method for modified couple stress theory. Comput. Mech. 59(1), 117–128 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Dadgar-Rad, F., Beheshti, A.: A nonlinear strain gradient finite element for microbeams and microframes. Acta Mech. 228(5), 1–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kwon, Y.-R., Lee, B.-C.: Three dimensional elements with Lagrange multipliers for the modified couple stress theory. Comput. Mech. 62(1), 97–110 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. Sidhardh, S., Ray, M.C.: Element-free Galerkin model of nano-beams considering strain gradient elasticity. Acta Mech. 229(11), 1–22 (2018)

    MathSciNet  MATH  Google Scholar 

  61. Pegios, I.P., Hatzigeorgiou, G.D.: Finite element free and forced vibration analysis of gradient elastic beam structures. Acta Mech. 229(12), 4817–4830 (2018)

    Article  MathSciNet  Google Scholar 

  62. Zheng, S., Chen, D., Wang, H.: Size dependent nonlinear free vibration of axially functionally graded tapered microbeams using finite element method. Thin-Walled Struct. 139, 46–52 (2019)

    Article  Google Scholar 

  63. Wang, X.: Differential quadrature and differential quadrature based element methods: theory and applications. Butterworth-Heinemann (2015)

  64. Xing, Y., Liu, B.: High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Int. J. Numer. Meth. Eng. 80(13), 1718–1742 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  65. Xing, Y., Liu, B., Liu, G.: A differential quadrature finite element method. Int. J. Appl. Mech. 2(01), 207–227 (2010)

    Article  Google Scholar 

  66. Tornabene, F., Fantuzzi, N., Ubertini, F., Viola, E.: Strong formulation finite element method based on differential quadrature: a survey. Appl. Mech. Rev. 67(2), 020801 (2015)

    Article  Google Scholar 

  67. Liu, C., Liu, B., Zhao, L., Xing, Y., Ma, C., Li, H.: A differential quadrature hierarchical finite element method and its applications to vibration and bending of Mindlin plates with curvilinear domains. Int. J. Numer. Methods Eng. 109(2), 174–197 (2017)

    Article  MathSciNet  Google Scholar 

  68. Fantuzzi, N., Tornabene, F., Bacciocchi, M., Neves, A.M., Ferreira, A.J.: Stability and accuracy of three Fourier expansion-based strong form finite elements for the free vibration analysis of laminated composite plates. Int. J. Numer. Meth. Eng. 111(4), 354–382 (2017)

    Article  MathSciNet  Google Scholar 

  69. Liu, C., Liu, B., Xing, Y., Reddy, J.N., Neves, A.M.A., Ferreira, A.J.M.: In-plane vibration analysis of plates in curvilinear domains by a differential quadrature hierarchical finite element method. Meccanica 52(4–5), 1017–1033 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhong, H., Zhang, R., Yu, H.: Buckling analysis of planar frameworks using the quadrature element method. Int. J. Struct. Stab. Dyn. 11(02), 363–378 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  71. Wang, X., Yuan, Z., Jin, C.: Weak form quadrature element method and its applications in science and engineering: a state-of-the-art review. Appl. Mech. Rev 69(3), 030801 (2017)

    Article  Google Scholar 

  72. Zhang, R., Zhong, H., Yao, X., Han, Q.: A quadrature element formulation of geometrically nonlinear laminated composite shells incorporating thickness stretch and drilling rotation. Acta Mech. 7, 94–100 (2020)

    MathSciNet  MATH  Google Scholar 

  73. Wang, X.: Novel differential quadrature element method for vibration analysis of hybrid nonlocal Euler-Bernoulli beams. Appl. Math. Lett. 77, 94–100 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  74. Jiang, J., Wang, L., Wang, X.: Differential quadrature element method for free vibration of strain gradient beams with elastic boundary conditions. J. Vibr. Eng. Technol. 7(6), 579–589 (2019)

    Article  Google Scholar 

  75. Ishaquddin, M., Gopalakrishnan, S.: A novel weak form quadrature element for gradient elastic beam theories. Appl. Math. Model. 77, 1–16 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  76. Ishaquddin, M., Gopalakrishnan, S.: Differential quadrature-based solution for non-classical Euler-Bernoulli beam theory. Eur. J. Mech. A-Solids 86, 104135 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  77. Zhang, B., Li, H., Kong, L., Wang, J., Shen, H.: Strain gradient differential quadrature beam finite elements. Comput. Struct. 218, 170–189 (2019)

    Article  Google Scholar 

  78. Zhang, B., Li, H., Kong, L., Shen, H., Zhang, X.: Coupling effects of surface energy, strain gradient, and inertia gradient on the vibration behavior of small-scale beams. Int. J. Mech. Sci. 184, 105834 (2020)

    Article  Google Scholar 

  79. Zhang, B., Li, H., Kong, L., Shen, H., Zhang, X.: Size-dependent static and dynamic analysis of Reddy-type micro-beams by strain gradient differential quadrature finite element method. Thin-Walled Struct. 148, 106496 (2020)

  80. Zhang, B., Li, H., Kong, L., Shen, H., Zhang, X.: Size-dependent vibration and stability of moderately thick functionally graded micro-plates using a differential quadrature-based geometric mapping scheme. Eng. Anal. Boundary Elem. 108, 339–365 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  81. Zhang, B., Li, H., Kong, L., Zhang, X., Feng, Z.: Strain gradient differential quadrature finite element for moderately thick micro-plates. Int. J. Numer. Methods Eng. 121, 5600–5646 (2020)

    Article  MathSciNet  Google Scholar 

  82. Zhang, B., Li, H., Kong, L., Zhang, X., Shen, H.: Strain gradient differential quadrature Kirchhoff plate finite element with the C2 partial compatibility. Eur. J. Mech. A-Solids 80, 103879 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  83. Zhang, B., Li, H., Liu, J., Shen, H., Zhang, X.: Surface energy-enriched gradient elastic Kirchhoff plate model and a novel weak-form solution scheme. Eur. J. Mech. A-Solids 85, 104118 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  84. Zhang, B., Li, H., Kong, L., Zhang, X., Feng, Z.: Variational formulation and differential quadrature finite element for freely vibrating strain gradient Kirchhoff plates. ZAMM-J. Appl. Math. Mech. 101, 1–42 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The work of this paper was financially supported by the National Natural Science Foundation of China (No.11602204), the Fundamental Research Funds for the Central Universities of China (No. 2682020ZT106), and Research Grants Council of Hong Kong (Nos. 15204719 and 15209918). We also thank the anonymous reviewer for her helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The detailed entries of \(\varvec{k}_{e}\) and \(\varvec{m}_{e}\) for the present EB DQFE are as follows:

$$\varvec{k}_{e} {\text{ = }}\left[ {\begin{array}{*{20}l} {\kappa _{{12}} } \hfill & {\kappa _{7} } \hfill & {\kappa _{{14}} } \hfill & {\text{0}} \hfill & { - \kappa _{{18}} } \hfill & { - \kappa _{{23}} } \hfill & { - \kappa _{{12}} } \hfill & {\kappa _{7} } \hfill & { - \kappa _{{14}} } \hfill & {\text{0}} \hfill & {\kappa _{{18}} } \hfill & { - \kappa _{{23}} } \hfill \\ {\kappa _{7} } \hfill & {\kappa _{{15}} } \hfill & {\kappa _{6} } \hfill & {\kappa _{{18}} } \hfill & {\kappa _{2} } \hfill & { - \kappa _{{19}} } \hfill & { - \kappa _{7} } \hfill & { - \kappa _{{13}} } \hfill & {\kappa _{5} } \hfill & { - \kappa _{{18}} } \hfill & {\kappa _{{24}} } \hfill & { - \kappa _{{26}} } \hfill \\ {\kappa _{{14}} } \hfill & {\kappa _{6} } \hfill & {\kappa _{{17}} } \hfill & {\kappa _{{23}} } \hfill & {\kappa _{{19}} } \hfill & {\kappa _{1} } \hfill & { - \kappa _{{14}} } \hfill & { - \kappa _{5} } \hfill & {\kappa _{{16}} } \hfill & { - \kappa _{{23}} } \hfill & {\kappa _{{26}} ,} \hfill & { - \kappa _{8} } \hfill \\ 0 \hfill & {\kappa _{{18}} } \hfill & {\kappa _{{23}} } \hfill & {\kappa _{{20}} } \hfill & {\kappa _{9} } \hfill & {\kappa _{{10}} } \hfill & {\text{0}} \hfill & { - \kappa _{{18}} } \hfill & {\kappa _{{23}} } \hfill & { - \kappa _{{20}} } \hfill & {\kappa _{9} } \hfill & { - \kappa _{{10}} } \hfill \\ { - \kappa _{{18}} } \hfill & {\kappa _{2} } \hfill & {\kappa _{{19}} } \hfill & {\kappa _{9} } \hfill & {\kappa _{{21}} } \hfill & {\kappa _{4} } \hfill & {\kappa _{{18}} } \hfill & { - \kappa _{{24}} } \hfill & {\kappa _{{26}} } \hfill & { - \kappa _{9} } \hfill & {\kappa _{{11}} } \hfill & { - \kappa _{3} } \hfill \\ { - \kappa _{{23}} } \hfill & { - \kappa _{{19}} } \hfill & {\kappa _{1} } \hfill & {\kappa _{{10}} } \hfill & {\kappa _{4} } \hfill & {\kappa _{{22}} } \hfill & {\kappa _{{23}} } \hfill & { - \kappa _{{26}} } \hfill & {\kappa _{8} } \hfill & { - \kappa _{{10}} } \hfill & {\kappa _{3} } \hfill & {\kappa _{{25}} } \hfill \\ { - \kappa _{{12}} } \hfill & { - \kappa _{7} } \hfill & { - \kappa _{{14}} } \hfill & {\text{0}} \hfill & {\kappa _{{18}} } \hfill & {\kappa _{{23}} } \hfill & {\kappa _{{12}} } \hfill & { - \kappa _{7} } \hfill & {\kappa _{{14}} } \hfill & {\text{0}} \hfill & { - \kappa _{{18}} } \hfill & {\kappa _{{23}} } \hfill \\ {\kappa _{7} } \hfill & { - \kappa _{{13}} } \hfill & { - \kappa _{5} } \hfill & { - \kappa _{{18}} } \hfill & { - \kappa _{{24}} } \hfill & { - \kappa _{{26}} } \hfill & { - \kappa _{7} } \hfill & {\kappa _{{15}} } \hfill & { - \kappa _{6} } \hfill & {\kappa _{{18}} } \hfill & { - \kappa _{2} } \hfill & { - \kappa _{{19}} } \hfill \\ { - \kappa _{{14}} } \hfill & {\kappa _{5} } \hfill & {\kappa _{{16}} } \hfill & {\kappa _{{23}} } \hfill & {\kappa _{{26}} } \hfill & {\kappa _{8} } \hfill & {\kappa _{{14}} } \hfill & { - \kappa _{6} } \hfill & {\kappa _{{17}} } \hfill & { - \kappa _{{23}} } \hfill & {\kappa _{{19}} } \hfill & { - \kappa _{1} } \hfill \\ 0 \hfill & { - \kappa _{{18}} } \hfill & { - \kappa _{{23}} } \hfill & { - \kappa _{{20}} } \hfill & { - \kappa _{9} } \hfill & { - \kappa _{{10}} } \hfill & {\text{0}} \hfill & {\kappa _{{18}} } \hfill & { - \kappa _{{23}} } \hfill & {\kappa _{{20}} } \hfill & { - \kappa _{9} } \hfill & {\kappa _{{10}} } \hfill \\ {\kappa _{{18}} } \hfill & {\kappa _{{24}} } \hfill & {\kappa _{{26}} } \hfill & {\kappa _{9} } \hfill & {\kappa _{{11}} } \hfill & {\kappa _{3} } \hfill & { - \kappa _{{18}} } \hfill & { - \kappa _{2} } \hfill & {\kappa _{{19}} } \hfill & { - \kappa _{9} } \hfill & {\kappa _{{21}} } \hfill & { - \kappa _{4} } \hfill \\ { - \kappa _{{23}} } \hfill & { - \kappa _{{26}} } \hfill & { - \kappa _{8} } \hfill & { - \kappa _{{10}} } \hfill & { - \kappa _{3} } \hfill & {\kappa _{{25}} } \hfill & {\kappa _{{23}} } \hfill & { - \kappa _{{19}} } \hfill & { - \kappa _{1} } \hfill & {\kappa _{{10}} } \hfill & { - \kappa _{4} } \hfill & {\kappa _{{22}} } \hfill \\ \end{array} } \right],$$
(A.1)

where

\(\kappa _{1} = \frac{{{\mkern 1mu} \Sigma _{4} }}{{\text{2}}}\), \(\kappa _{2} = \frac{{{\mkern 1mu} \Sigma _{5} }}{{\text{2}}}\), \(\kappa _{3} = {\text{8}}\left( {\frac{{{\mkern 1mu} \Sigma _{1} }}{{35}} + \frac{{{\text{6}}\Sigma _{6} }}{{L_{e}^{2} }}} \right)\), \(\kappa _{4} = {\text{2}}\left( {\frac{{{\text{11}}{\mkern 1mu} \Sigma _{1} }}{{35}} + \frac{{{\text{36}}\Sigma _{6} }}{{L_{e}^{2} }}} \right)\), \(\kappa _{5} = \frac{{\Sigma _{3} L_{e}^{2} }}{{{\text{210}}}} - \frac{{8{\mkern 1mu} \Sigma _{2} }}{{35}}\),

\(\kappa _{6} = \frac{1}{5}\left( {\frac{{22{\mkern 1mu} \Sigma _{2} }}{7} + \frac{{\Sigma _{3} L_{e}^{2} }}{{12}}} \right)\), \(\kappa _{7} = \frac{3}{7}\left( {\frac{{{\mkern 1mu} \Sigma _{3} }}{{\text{2}}} + \frac{{40{\mkern 1mu} \Sigma _{2} }}{{{\mkern 1mu} L_{e}^{2} }}} \right)\), \(\kappa _{8} = {\mkern 1mu} \frac{{\Sigma _{4} }}{{\text{2}}} + \frac{{\Sigma _{5} L_{e}^{2} }}{{140}}\), \(\kappa _{9} = \frac{{{\text{120}}}}{{L_{e}^{2} }}\left( {\frac{{\Sigma _{1} }}{{7{\mkern 1mu} }} + \frac{{{\text{6}}\Sigma _{6} }}{{L_{e}^{2} }}} \right)\),

\(\kappa _{{10}} = \frac{{\text{6}}}{{L_{e} }}\left( {{\mkern 1mu} \frac{{\Sigma _{1} }}{7} + \frac{{20\Sigma _{6} }}{{L_{e}^{2} }}} \right)\), \(\kappa _{{11}} = \frac{{24}}{{L_{e} }}\left( {\frac{{9{\mkern 1mu} \Sigma _{1} }}{{35{\mkern 1mu} }} + {\mkern 1mu} \frac{{14\Sigma _{6} }}{{L_{e}^{2} }}} \right)\), \(\kappa _{{12}} = \frac{{10}}{{7L_{e} }}\left( {\frac{{24{\mkern 1mu} \Sigma _{2} }}{{L_{e}^{2} }} + \Sigma _{3} } \right)\), \(\kappa _{{13}} = \frac{{\Sigma _{3} L_{e} }}{{70}} - \frac{{216{\mkern 1mu} \Sigma _{2} }}{{35L_{e} }}\),

\(\kappa _{{14}} = \frac{{6\Sigma _{2} }}{{7L_{e} }} + \frac{{\Sigma _{3} L_{e} }}{{84}}\), \(\kappa _{{15}} = \frac{8}{{35}}\left( {\frac{{48{\mkern 1mu} \Sigma _{2} }}{{L_{e} }} + \Sigma _{3} L_{e} } \right)\), \(\kappa _{{16}} = \frac{{L_{e} }}{{35}}\left( {\Sigma _{2} + \frac{{\Sigma _{3} L_{e}^{2} }}{{{\text{36}}}}} \right)\), \(\kappa _{{17}} = \frac{{L_{e} }}{{35}}\left( {6{\mkern 1mu} \Sigma _{2} + \frac{{\Sigma _{3} L_{e}^{2} }}{{18}}} \right)\),

\(\kappa _{{18}} = \frac{{\text{3}}}{{L_{e} }}\left( {\frac{{{\text{4}}\Sigma _{4} }}{{L_{e}^{2} }} + \frac{{{\text{3}}{\mkern 1mu} \Sigma _{5} }}{{7{\mkern 1mu} }}} \right)\), \(\kappa _{{19}} = {\text{3}}\left( {{\mkern 1mu} \frac{{\Sigma _{4} }}{{L_{e} }} + \frac{{{\text{3}}{\mkern 1mu} \Sigma _{5} L_{e} }}{{140}}} \right)\), \(\kappa _{{20}} = \frac{{{\text{240}}}}{{L_{e}^{3} }}\left( {\frac{{{\text{6}}\Sigma _{6} }}{{L_{e}^{2} }} + \frac{{\Sigma _{1} }}{{7{\mkern 1mu} }}} \right)\), \(\kappa _{{21}} = \frac{{384}}{{L_{e} }}\left( {{\mkern 1mu} \frac{{\Sigma _{6} }}{{L_{e}^{2} }} + \frac{{{\mkern 1mu} \Sigma _{1} }}{{35{\mkern 1mu} }}} \right)\),

\(\kappa _{{22}} = 6\left( {\frac{{3\Sigma _{6} }}{{L_{e} }} + \frac{{{\mkern 1mu} \Sigma _{1} L_{e} }}{{35}}} \right)\), \(\kappa _{{23}} = \frac{{{\mkern 1mu} \Sigma _{5} }}{7} + {\mkern 1mu} \frac{{6\Sigma _{4} }}{{L_{e}^{2} }}\), \(\kappa _{{24}} = \frac{{11{\mkern 1mu} \Sigma _{5} }}{{14}} + \frac{{12\Sigma _{4} }}{{L_{e}^{2} }}\), \(\kappa _{{25}} = \frac{{\Sigma _{1} L_{e} }}{{35}} - {\mkern 1mu} \frac{{6\Sigma _{6} }}{{L_{e} }}\),

$$\kappa _{{26}} = {\mkern 1mu} \frac{{3\Sigma _{4} }}{{L_{e} }} + \frac{{11{\mkern 1mu} \Sigma _{5} L_{e} }}{{140}},$$
(A.2)
$$\varvec{m}_{e} = \left[ {\begin{array}{*{20}l} {\Lambda _{{18}} } \hfill & {\Lambda _{2} } \hfill & {\Lambda _{6} } \hfill & {\Lambda _{{16}} } \hfill & { - \Lambda _{{19}} } \hfill & { - \Lambda _{{11}} } \hfill & {\Lambda _{{17}} } \hfill & { - \Lambda _{1} } \hfill & {\Lambda _{3} } \hfill & { - \Lambda _{{16}} } \hfill & {\Lambda _{{19}} } \hfill & { - \Lambda _{{11}} } \hfill \\ {\Lambda _{2} } \hfill & {\Lambda _{4} } \hfill & {\Lambda _{7} } \hfill & {\Lambda _{{19}} } \hfill & 0 \hfill & { - \Lambda _{{13}} } \hfill & {\Lambda _{1} } \hfill & { - \Lambda _{5} } \hfill & {\Lambda _{8} } \hfill & { - \Lambda _{{19}} } \hfill & {\Lambda _{{12}} } \hfill & { - \Lambda _{{14}} } \hfill \\ {\Lambda _{6} } \hfill & {\Lambda _{7} } \hfill & {\Lambda _{{10}} } \hfill & {\Lambda _{{11}} } \hfill & {\Lambda _{{13}} } \hfill & 0 \hfill & {\Lambda _{3} } \hfill & { - \Lambda _{8} } \hfill & {\Lambda _{9} } \hfill & { - \Lambda _{{11}} } \hfill & {\Lambda _{{14}} } \hfill & { - \Lambda _{{15}} } \hfill \\ {\Lambda _{{16}} } \hfill & {\Lambda _{{19}} } \hfill & {\Lambda _{{11}} } \hfill & {\Lambda _{{29}} } \hfill & {\Lambda _{{20}} } \hfill & {\Lambda _{{25}} } \hfill & {\Lambda _{{16}} } \hfill & { - \Lambda _{{19}} } \hfill & {\Lambda _{{11}} } \hfill & {\Lambda _{{22}} } \hfill & { - \Lambda _{{21}} } \hfill & {\Lambda _{{23}} } \hfill \\ { - \Lambda _{{19}} } \hfill & 0 \hfill & {\Lambda _{{13}} } \hfill & {\Lambda _{{20}} } \hfill & {\Lambda _{{30}} } \hfill & {\Lambda _{{27}} } \hfill & {\Lambda _{{19}} } \hfill & { - \Lambda _{{12}} } \hfill & {\Lambda _{{14}} } \hfill & {\Lambda _{{21}} } \hfill & { - \Lambda _{{24}} } \hfill & {\Lambda _{{26}} } \hfill \\ { - \Lambda _{{11}} } \hfill & { - \Lambda _{{13}} } \hfill & 0 \hfill & {\Lambda _{{25}} } \hfill & {\Lambda _{{27}} } \hfill & {\Lambda _{{31}} } \hfill & {\Lambda _{{11}} } \hfill & { - \Lambda _{{14}} } \hfill & {\Lambda _{{15}} } \hfill & {\Lambda _{{23}} } \hfill & { - \Lambda _{{26}} } \hfill & {\Lambda _{{28}} } \hfill \\ {\Lambda _{{17}} } \hfill & {\Lambda _{1} } \hfill & {\Lambda _{3} } \hfill & {\Lambda _{{16}} } \hfill & {\Lambda _{{19}} } \hfill & {\Lambda _{{11}} } \hfill & {\Lambda _{{18}} } \hfill & { - \Lambda _{2} } \hfill & {\Lambda _{6} } \hfill & { - \Lambda _{{16}} } \hfill & { - \Lambda _{{19}} } \hfill & {\Lambda _{{11}} } \hfill \\ { - \Lambda _{1} } \hfill & { - \Lambda _{5} } \hfill & { - \Lambda _{8} } \hfill & { - \Lambda _{{19}} } \hfill & { - \Lambda _{{12}} } \hfill & { - \Lambda _{{14}} } \hfill & { - \Lambda _{2} } \hfill & {\Lambda _{4} } \hfill & { - \Lambda _{7} } \hfill & {\Lambda _{{19}} } \hfill & 0 \hfill & { - \Lambda _{{13}} } \hfill \\ {\Lambda _{3} } \hfill & {\Lambda _{8} } \hfill & {\Lambda _{9} } \hfill & {\Lambda _{{11}} } \hfill & {\Lambda _{{14}} } \hfill & {\Lambda _{{15}} } \hfill & {\Lambda _{6} } \hfill & { - \Lambda _{7} } \hfill & {\Lambda _{{10}} } \hfill & { - \Lambda _{{11}} } \hfill & {\Lambda _{{13}} } \hfill & 0 \hfill \\ { - \Lambda _{{16}} } \hfill & { - \Lambda _{{19}} } \hfill & { - \Lambda _{{11}} } \hfill & {\Lambda _{{22}} } \hfill & {\Lambda _{{21}} } \hfill & {\Lambda _{{23}} } \hfill & { - \Lambda _{{16}} } \hfill & {\Lambda _{{19}} } \hfill & { - \Lambda _{{11}} } \hfill & {\Lambda _{{29}} } \hfill & { - \Lambda _{{20}} } \hfill & {\Lambda _{{25}} } \hfill \\ {\Lambda _{{19}} } \hfill & {\Lambda _{{12}} } \hfill & {\Lambda _{{14}} } \hfill & { - \Lambda _{{21}} } \hfill & { - \Lambda _{{24}} } \hfill & { - \Lambda _{{26}} } \hfill & { - \Lambda _{{19}} } \hfill & 0 \hfill & {\Lambda _{{13}} } \hfill & { - \Lambda _{{20}} } \hfill & {\Lambda _{{30}} } \hfill & { - \Lambda _{{27}} } \hfill \\ { - \Lambda _{{11}} } \hfill & { - \Lambda _{{14}} } \hfill & { - \Lambda _{{15}} } \hfill & {\Lambda _{{23}} } \hfill & {\Lambda _{{26}} } \hfill & {\Lambda _{{28}} } \hfill & {\Lambda _{{11}} } \hfill & { - \Lambda _{{13}} } \hfill & 0 \hfill & {\Lambda _{{25}} } \hfill & { - \Lambda _{{27}} } \hfill & {\Lambda _{{31}} } \hfill \\ \end{array} } \right],$$
(A.3)

where

\(\Lambda _{1} = \frac{{8M_{0} L_{e}^{2} }}{{245}}\), \(\Lambda _{2} = \frac{{33{\mkern 1mu} M_{0} L_{e}^{2} }}{{490}}\), \(\Lambda _{3} = \frac{{23{\mkern 1mu} M_{0} L_{e}^{3} }}{{7056}}\), \(\Lambda _{4} = \frac{{53{\mkern 1mu} M_{0} L_{e}^{3} }}{{3528}}\), \(\Lambda _{5} = \frac{{169{\mkern 1mu} M_{0} L_{e}^{3} }}{{17640}}\), \(\Lambda _{6} = \frac{{179{\mkern 1mu} M_{0} L_{e}^{3} }}{{35280}}\),

\(\Lambda _{7} = \frac{{11{\mkern 1mu} M_{0} L_{e}^{4} }}{{8820}}\), \(\Lambda _{8} = \frac{{11{\mkern 1mu} M_{0} L_{e}^{4} }}{{11760}}\), \(\Lambda _{9} = \frac{{19{\mkern 1mu} M_{0} L_{e}^{5} }}{{211680}}\), \(\Lambda _{{10}} = \frac{{23{\mkern 1mu} M_{0} L_{e}^{5} }}{{211680}}\), \(\Lambda _{{11}} = \frac{{M_{1} L_{e}^{2} }}{{84}}\), \(\Lambda _{{12}} = \frac{{13{\mkern 1mu} M_{1} L_{e}^{2} }}{{420}}\),

\(\Lambda _{{13}} = \frac{{M_{1} L_{e}^{3} }}{{1008}}\), \(\Lambda _{{14}} = \frac{{13{\mkern 1mu} M_{1} L_{e}^{3} }}{{5040}}\), \(\Lambda _{{15}} = \frac{{M_{1} L_{e}^{4} }}{{5040}}\), \(\Lambda _{{16}} = \frac{{{\mkern 1mu} M_{1} }}{{\text{2}}}\),\(\Lambda _{{17}} = \frac{{53{\mkern 1mu} M_{0} L_{e} }}{{490}}\), \(\Lambda _{{18}} = \frac{{96{\mkern 1mu} M_{0} L_{e} }}{{245}}\),

\(\Lambda _{{19}} = \frac{{11{\mkern 1mu} M_{1} L_{e} }}{{84}}\), \(\Lambda _{{20}} = \frac{{3M_{2} }}{{14}} + \frac{{{\text{33}}M_{0} L_{e}^{2} }}{{{\text{420}}}}\),\(\Lambda _{{22}} = \frac{{53{\mkern 1mu} M_{0} L_{e} }}{{490}} - \frac{{10{\mkern 1mu} M_{2} }}{{7L}}\), \(\Lambda _{{21}} = \frac{{8{\mkern 1mu} M_{0} L_{e}^{2} }}{{{\text{245}}}} - \frac{{{\mkern 1mu} {\text{3}}M_{2} }}{{{\text{14}}}}\),

\(\Lambda _{{23}} = \frac{{L_{e} }}{{84}}\left( {\frac{{23{\mkern 1mu} M_{0} L_{e}^{2} }}{{84}} - M_{2} } \right)\), \(\Lambda _{{24}} = \frac{{L_{e} }}{{70}}\left( {\frac{{169{\mkern 1mu} M_{0} L_{e}^{2} }}{{252}} + M_{2} } \right)\), \(\Lambda _{{25}} = \frac{{L_{e} }}{{84}}\left( {M_{2} + \frac{{179{\mkern 1mu} M_{0} L_{e}^{2} }}{{420}}} \right)\),

\(\Lambda _{{26}} = \frac{{L_{e}^{2} }}{{210}}\left( {M_{2} + \frac{{11{\mkern 1mu} M_{0} L_{e}^{2} }}{{56}}} \right)\), \(\Lambda _{{27}} = \frac{{L_{e}^{2} }}{{60}}\left( {M_{2} + \frac{{11{\mkern 1mu} M_{0} L_{e}^{2} }}{{147}}} \right)\), \(\Lambda _{{28}} = \frac{{L_{e}^{3} }}{{1260}}\left( {M_{2} + \frac{{19{\mkern 1mu} M_{0} L_{e}^{2} }}{{168}}} \right)\),

$$\Lambda _{{29}} = \frac{2}{7}\left( {\frac{{48{\mkern 1mu} M_{0} L_{e} }}{{35}} + \frac{{5M_{2} }}{{L_{e} }}} \right),\Lambda _{{30}} = \frac{{L{}_{e}}}{7}\left( {\frac{{8{\mkern 1mu} M_{2} }}{5} + \frac{{53{\mkern 1mu} M_{0} L_{e}^{2} }}{{504}}} \right),\Lambda _{{31}} = \frac{{L_{e}^{3} }}{{630}}\left( {M_{2} + \frac{{23{\mkern 1mu} M_{0} L_{e}^{2} }}{{336}}} \right).$$
(A.4)

Appendix B

The detailed entries of \(\varvec{k}_{e}\) and \(\varvec{m}_{e}\) for the present TB DQFE are as follows:

$$\varvec{k}_{e} {\text{ = }}\left[ {\begin{array}{*{20}l} {\kappa _{5} } \hfill & {\kappa _{{14}} } \hfill & 0 \hfill & 0 \hfill & {\kappa _{7} } \hfill & {\kappa _{{16}} } \hfill & { - \kappa _{5} } \hfill & {\kappa _{{14}} } \hfill & 0 \hfill & 0 \hfill & { - \kappa _{7} } \hfill & {\kappa _{{16}} } \hfill \\ {\kappa _{{14}} } \hfill & {\kappa _{6} } \hfill & 0 \hfill & 0 \hfill & {\kappa _{{16}} } \hfill & {\kappa _{8} } \hfill & { - \kappa _{{14}} } \hfill & { - \kappa _{{15}} } \hfill & 0 \hfill & 0 \hfill & { - \kappa _{{16}} } \hfill & { - \kappa _{{17}} } \hfill \\ 0 \hfill & 0 \hfill & {\kappa _{2} } \hfill & {\kappa _{{11}} } \hfill & { - \kappa _{{10}} } \hfill & { - \kappa _{{12}} } \hfill & 0 \hfill & 0 \hfill & { - \kappa _{2} } \hfill & {\kappa _{{11}} } \hfill & { - \kappa _{{10}} } \hfill & {\kappa _{{12}} } \hfill \\ 0 \hfill & 0 \hfill & {\kappa _{{11}} } \hfill & {\kappa _{3} } \hfill & {\kappa _{{12}} } \hfill & { - \kappa _{1} } \hfill & 0 \hfill & 0 \hfill & { - \kappa _{{11}} } \hfill & { - \kappa _{{13}} } \hfill & { - \kappa _{{12}} } \hfill & {\kappa _{4} } \hfill \\ {\kappa _{7} } \hfill & {\kappa _{{16}} } \hfill & { - \kappa _{{10}} } \hfill & {\kappa _{{12}} } \hfill & {\kappa _{9} } \hfill & {\kappa _{{20}} } \hfill & { - \kappa _{7} } \hfill & {\kappa _{{16}} } \hfill & {\kappa _{{10}} } \hfill & { - \kappa _{{12}} } \hfill & {\kappa _{{18}} } \hfill & { - \kappa _{{19}} } \hfill \\ {\kappa _{{16}} } \hfill & {\kappa _{8} } \hfill & { - \kappa _{{12}} } \hfill & { - \kappa _{1} } \hfill & {\kappa _{{20}} } \hfill & {\kappa _{{21}} } \hfill & { - \kappa _{{16}} } \hfill & { - \kappa _{{17}} } \hfill & {\kappa _{{12}} } \hfill & { - \kappa _{4} } \hfill & {\kappa _{{19}} } \hfill & { - \kappa _{{22}} } \hfill \\ { - \kappa _{5} } \hfill & { - \kappa _{{14}} } \hfill & 0 \hfill & 0 \hfill & { - \kappa _{7} } \hfill & { - \kappa _{{16}} } \hfill & {\kappa _{5} } \hfill & { - \kappa _{{14}} } \hfill & 0 \hfill & 0 \hfill & {\kappa _{7} } \hfill & {\kappa _{{19}} } \hfill \\ {\kappa _{{14}} } \hfill & { - \kappa _{{15}} } \hfill & 0 \hfill & 0 \hfill & {\kappa _{{16}} } \hfill & { - \kappa _{{17}} } \hfill & { - \kappa _{{14}} } \hfill & {\kappa _{6} } \hfill & 0 \hfill & 0 \hfill & { - \kappa _{{16}} } \hfill & {\kappa _{8} } \hfill \\ 0 \hfill & 0 \hfill & { - \kappa _{2} } \hfill & { - \kappa _{{11}} } \hfill & {\kappa _{{10}} } \hfill & {\kappa _{{12}} } \hfill & 0 \hfill & 0 \hfill & {\kappa _{2} } \hfill & { - \kappa _{{11}} } \hfill & {\kappa _{{10}} } \hfill & { - \kappa _{{12}} } \hfill \\ 0 \hfill & 0 \hfill & {\kappa _{{11}} } \hfill & { - \kappa _{{13}} } \hfill & { - \kappa _{{12}} } \hfill & { - \kappa _{4} } \hfill & 0 \hfill & 0 \hfill & { - \kappa _{{11}} } \hfill & {\kappa _{3} } \hfill & {\kappa _{{12}} } \hfill & {\kappa _{1} } \hfill \\ { - \kappa _{7} } \hfill & { - \kappa _{{16}} } \hfill & { - \kappa _{{10}} } \hfill & { - \kappa _{{12}} } \hfill & {\kappa _{{18}} } \hfill & {\kappa _{{19}} } \hfill & {\kappa _{7} } \hfill & { - \kappa _{{16}} } \hfill & {\kappa _{{10}} } \hfill & {\kappa _{{12}} } \hfill & {\kappa _{9} } \hfill & { - \kappa _{{20}} } \hfill \\ {\kappa _{{16}} } \hfill & { - \kappa _{{17}} } \hfill & {\kappa _{{12}} } \hfill & {\kappa _{4} } \hfill & { - \kappa _{{19}} } \hfill & { - \kappa _{{22}} } \hfill & { - \kappa _{{16}} } \hfill & {\kappa _{8} } \hfill & { - \kappa _{{12}} } \hfill & {\kappa _{1} } \hfill & { - \kappa _{{20}} } \hfill & {\kappa _{{21}} } \hfill \\ \end{array} } \right],$$
(B.1)

where

\(\kappa _{1} = \frac{{\Sigma _{3} }}{2}\), \(\kappa _{2} = \frac{{12}}{L}\left( {\frac{{{\mkern 1mu} \Sigma _{1} }}{{5{\mkern 1mu} }} + \frac{{2\Sigma _{2} }}{{L_{e}^{2} }}} \right)\), \(\kappa _{3} = 4\left( {\frac{{\Sigma _{1} L_{e} }}{{15}} + {\mkern 1mu} \frac{{2\Sigma _{2} }}{{L_{e} }}} \right)\), \(\kappa _{4} = \frac{1}{2}\left( {\frac{{\Sigma _{1} L_{e}^{2} }}{{15}} + {\mkern 1mu} \Sigma _{3} } \right)\),\(\kappa _{5} = \frac{6}{{L_{e} }}\left( {\frac{{4\Sigma _{6} }}{{L_{e}^{2} }} + \frac{{\Sigma _{8} }}{5}} \right)\),

\(\kappa _{6} = 2\left( {{\mkern 1mu} \frac{{4\Sigma _{6} }}{{L_{e} }} + \frac{{{\mkern 1mu} \Sigma _{8} L_{e} }}{{15}}} \right)\), \(\kappa _{7} = \frac{6}{{L_{e} }}\left( {\frac{{2\Sigma _{7} }}{{L_{e}^{2} }} + {\mkern 1mu} \frac{{\Sigma _{9} }}{5}} \right)\), \(\kappa _{8} = 2\left( {{\mkern 1mu} \frac{{2\Sigma _{7} }}{{L_{e} }} + \frac{{\Sigma _{9} L_{e} }}{{15}}} \right)\), \(\kappa _{9} = 4\left( {\frac{{14{\mkern 1mu} \Sigma _{1} L_{e} }}{{75}} + \frac{{3{\mkern 1mu} \Sigma _{4} }}{{5{\mkern 1mu} L_{e} }} + \frac{{6\Sigma _{5} }}{{L_{e}^{3} }}} \right)\),

\(\kappa _{{10}} = \Sigma _{1}\), \(\kappa _{{11}} = \frac{{\Sigma _{1} }}{5} + \frac{{12\Sigma _{2} }}{{L_{e}^{2} }}\), \(\kappa _{{12}} = \frac{{\Sigma _{1} L_{e} }}{5} + \frac{{\Sigma _{3} }}{{L_{e} }}\), \(\kappa _{{13}} = \frac{{\Sigma _{1} L_{e} }}{{15}} - {\mkern 1mu} \frac{{4\Sigma _{2} }}{{L_{e} }}\), \(\kappa _{{14}} = \frac{{12\Sigma _{6} }}{{L_{e}^{2} }} + \frac{{\Sigma _{8} }}{8}\),

\(\kappa _{{15}} = \frac{{{\mkern 1mu} \Sigma _{8} L_{e} }}{{30}} - {\mkern 1mu} \frac{{4\Sigma _{6} }}{{L_{e} }}\), \(\kappa _{{16}} = {\mkern 1mu} \frac{{6\Sigma _{7} }}{{L_{e}^{2} }} + \frac{{{\mkern 1mu} \Sigma _{9} }}{{10}}\), \(\kappa _{{17}} = \frac{{{\mkern 1mu} \Sigma _{9} L_{e} }}{{30}} - {\mkern 1mu} \frac{{2\Sigma _{7} }}{{L_{e} }}\), \(\kappa _{{18}} = \frac{{19{\mkern 1mu} \Sigma _{1} L_{e} }}{{75}} - \frac{{12{\mkern 1mu} \Sigma _{4} }}{{5{\mkern 1mu} L_{e} }} - \frac{{24\Sigma _{5} }}{{L_{e}^{3} }}\),

\(\kappa _{{19}} = \frac{{3{\mkern 1mu} \Sigma _{1} L_{e}^{2} }}{{50}} - \frac{{{\mkern 1mu} \Sigma _{4} }}{5} - \frac{{12\Sigma _{5} }}{{L_{e}^{2} }}\), \(\kappa _{{20}} = \frac{{8{\mkern 1mu} \Sigma _{1} L_{e}^{2} }}{{75}} + \frac{{{\mkern 1mu} \Sigma _{4} }}{5} + \frac{{12\Sigma _{5} }}{{L_{e}^{2} }}\), \(\kappa _{{21}} = \frac{{{\mkern 1mu} \Sigma _{1} L_{e}^{3} }}{{50}} + \frac{{4{\mkern 1mu} \Sigma _{4} L_{e} }}{{15}} + {\mkern 1mu} \frac{{8\Sigma _{5} }}{{L_{e} }}\),

$$\kappa _{{22}} = \frac{{\Sigma _{1} L_{e}^{3} }}{{75}} + \frac{{{\mkern 1mu} \Sigma _{4} L_{e} }}{{15}} - {\mkern 1mu} \frac{{4\Sigma _{5} }}{{L_{e} }},$$
(B.2)
$$\varvec{m}_{e} {\text{ = }}\left[ {\begin{array}{*{20}l} {\Lambda _{2} } \hfill & {\Lambda _{4} } \hfill & 0 \hfill & 0 \hfill & {\Lambda _{8} } \hfill & {\Lambda _{{10}} } \hfill & {\Lambda _{1} } \hfill & { - \Lambda _{3} } \hfill & 0 \hfill & 0 \hfill & {\Lambda _{7} } \hfill & { - \Lambda _{9} } \hfill \\ {\Lambda _{4} } \hfill & {\Lambda _{5} } \hfill & 0 \hfill & 0 \hfill & {\Lambda _{{10}} } \hfill & {\Lambda _{{11}} } \hfill & {\Lambda _{3} } \hfill & { - \Lambda _{6} } \hfill & 0 \hfill & 0 \hfill & {\Lambda _{9} } \hfill & { - \Lambda _{{12}} } \hfill \\ 0 \hfill & 0 \hfill & {\Lambda _{2} } \hfill & {\Lambda _{4} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\Lambda _{1} } \hfill & { - \Lambda _{3} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & {\Lambda _{4} } \hfill & {\Lambda _{5} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\Lambda _{3} } \hfill & { - \Lambda _{6} } \hfill & 0 \hfill & 0 \hfill \\ {\Lambda _{8} } \hfill & {\Lambda _{{10}} } \hfill & 0 \hfill & 0 \hfill & {\Lambda _{{14}} } \hfill & {\Lambda _{{16}} } \hfill & {\Lambda _{7} } \hfill & { - \Lambda _{9} } \hfill & 0 \hfill & 0 \hfill & {\Lambda _{{13}} } \hfill & { - \Lambda _{{15}} } \hfill \\ {\Lambda _{{10}} } \hfill & {\Lambda _{{11}} } \hfill & 0 \hfill & 0 \hfill & {\Lambda _{{16}} } \hfill & {\Lambda _{{17}} } \hfill & {\Lambda _{9} } \hfill & { - \Lambda _{{12}} } \hfill & 0 \hfill & 0 \hfill & {\Lambda _{{15}} } \hfill & { - \Lambda _{{18}} } \hfill \\ {\Lambda _{1} } \hfill & {\Lambda _{3} } \hfill & 0 \hfill & 0 \hfill & {\Lambda _{7} } \hfill & {\Lambda _{9} } \hfill & {\Lambda _{2} } \hfill & { - \Lambda _{4} } \hfill & 0 \hfill & 0 \hfill & {\Lambda _{8} } \hfill & { - \Lambda _{{10}} } \hfill \\ { - \Lambda _{3} } \hfill & { - \Lambda _{6} } \hfill & 0 \hfill & 0 \hfill & { - \Lambda _{9} } \hfill & { - \Lambda _{{12}} } \hfill & { - \Lambda _{4} } \hfill & {\Lambda _{5} } \hfill & 0 \hfill & 0 \hfill & { - \Lambda _{{10}} } \hfill & {\Lambda _{{11}} } \hfill \\ 0 \hfill & 0 \hfill & {\Lambda _{1} } \hfill & {\Lambda _{3} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & {\Lambda _{2} } \hfill & { - \Lambda _{4} } \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & { - \Lambda _{3} } \hfill & { - \Lambda _{6} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & { - \Lambda _{4} } \hfill & {\Lambda _{5} } \hfill & 0 \hfill & 0 \hfill \\ {\Lambda _{7} } \hfill & {\Lambda _{9} } \hfill & 0 \hfill & 0 \hfill & {\Lambda _{{13}} } \hfill & {\Lambda _{{15}} } \hfill & {\Lambda _{8} } \hfill & { - \Lambda _{{10}} } \hfill & 0 \hfill & 0 \hfill & {\Lambda _{{14}} } \hfill & { - \Lambda _{{16}} } \hfill \\ { - \Lambda _{9} } \hfill & { - \Lambda _{{12}} } \hfill & 0 \hfill & 0 \hfill & { - \Lambda _{{15}} } \hfill & { - \Lambda _{{18}} } \hfill & { - \Lambda _{{10}} } \hfill & {\Lambda _{{11}} } \hfill & 0 \hfill & 0 \hfill & { - \Lambda _{{16}} } \hfill & {\Lambda _{{17}} } \hfill \\ \end{array} } \right],$$
(B.3)

where

\(\Lambda _{1} = \frac{{19M_{0} L_{e} }}{{150}}\), \(\Lambda _{2} = \frac{{28{\mkern 1mu} M_{0} L_{e} }}{{75}}\), \(\Lambda _{3} = \frac{{3M_{0} L_{e}^{2} }}{{100}}\), \(\Lambda _{4} = \frac{{4M_{0} L_{e}^{2} }}{{75}}\), \(\Lambda _{5} = \frac{{M_{0} L_{e}^{3} }}{{100}}\), \(\Lambda _{6} = \frac{{M_{0} L_{e}^{3} }}{{150}}\),

\(\Lambda _{7} = \frac{{19{\mkern 1mu} M_{1} L_{e} }}{{150}}\), \(\Lambda _{8} = \frac{{28{\mkern 1mu} M_{1} L_{e} }}{{75}}\), \(\Lambda _{9} = \frac{{3{\mkern 1mu} M_{1} L_{e}^{2} }}{{100}}\), \(\Lambda _{{10}} = \frac{{4{\mkern 1mu} M_{1} L_{e}^{2} }}{{75}}\), \(\Lambda _{{11}} = \frac{{M_{1} L_{e}^{3} }}{{100}}\), \(\Lambda _{{12}} = \frac{{M_{1} L_{e}^{3} }}{{150}}\),

$$\Lambda _{{13}} = \frac{{19{\mkern 1mu} M_{2} L_{e} }}{{150}},\Lambda _{{15}} = \frac{{3{\mkern 1mu} M_{2} L_{e}^{2} }}{{100}},\Lambda _{{16}} = \frac{{4{\mkern 1mu} M_{2} L_{e}^{2} }}{{75}},\Lambda _{{17}} = \frac{{M_{2} L_{e}^{3} }}{{100}},\Lambda _{{18}} = \frac{{M_{2} L_{e}^{3} }}{{150}}.$$
(B.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Li, H., Kong, L. et al. Weak-form differential quadrature finite elements for functionally graded micro-beams with strain gradient effects. Acta Mech 232, 4009–4036 (2021). https://doi.org/10.1007/s00707-021-03028-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03028-y

Navigation