Skip to main content
Log in

Analysis of nonlinear fully intrinsic equations of geometrically exact beams using generalized differential quadrature method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the generalized differential quadrature (GDQ) method is presented for solving the nonlinear, fully intrinsic equations of geometrically exact rotating and nonrotating beams. The fully intrinsic equations of beams involve only moments, forces, velocity and angular velocity, and in these equations, the displacements and rotations will not appear explicitly. This paper presents the generalized differential quadrature method for solution of these equations. To show the accuracy, validity and applicability of the proposed generalized differential quadrature method for solving the fully intrinsic beam equations, different cases are considered. It is found that the GDQ method gives very accurate results with very few numbers of discrete points and also has very low computational cost as compared to some other conventional numerical methods and therefore this method is very efficient, accurate and fast for solving the fully intrinsic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauchau O.A., Kang N.K.: A multibody formulation for helicopter structural dynamic analysis. J. Am. Helicopter Soc. 38(2), 3–14 (1993)

    Google Scholar 

  2. Simo J.C., Vu-Quoc L.: On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66(2), 125–161 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hodges D.H.: A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. Int. J. Solids Struct. 26(11), 1253–1273 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Patil M.J., Hodges D.H., Cesnik C.E.S.: Nonlinear aeroelastic analysis of complete aircraft in subsonic flow. J. Aircr. 37(5), 753–760 (2000)

    Article  Google Scholar 

  5. Patil M.J., Hodges D.H.: Flight dynamics of highly flexible flying wings. J. Aircr. 43(6), 1790–1799 (2006)

    Article  Google Scholar 

  6. Hodges D.H., Shang X., Cesnik C.E.S.: Finite element solution of nonlinear intrinsic equations for curved composite beams. J. Am. Helicopter Soc. 41(4), 313–321 (1996)

    Article  Google Scholar 

  7. Green, A.E., Laws, N.: A General Theory of Rods, Proceedings of the Royal Society of London. 293, 145–155 (1966)

  8. Reissner E.: On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52(2), 87–95 (1973)

    Article  MATH  Google Scholar 

  9. Hegemier G.A., Nair S.: A nonlinear dynamical theory for heterogeneous, anisotropic, elasticrods. AIAA J. 15(1), 8–15 (1977)

    Article  MATH  Google Scholar 

  10. Hodges D.H.: Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams. AIAA J. 41(6), 1131–1137 (2003)

    Article  Google Scholar 

  11. Palacios, R., Cesnik, C.E.S.: Structural models for flight dynamic analysis of very flexible aircraft. In: Paper Presented at the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, California, USA, 4–7 May 2009

  12. Traugott J.P., Patil M.J., Holzapfel F.: Nonlinear modeling of integrally actuated beams. Aerosp. Sci. Technol. 10(6), 509–518 (2006)

    Article  MATH  Google Scholar 

  13. Patil M.J., Althoff M.: Energy-consistent, Galerkin approach for the nonlinear dynamics of beams using intrinsic equations. J. Vib. Control 17(11), 1748–1758 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Patil M.J., Hodges D.H.: Variable-order finite elements for nonlinear, fully intrinsic beam equations. J. Mech. Mater. Struct. 6(1-4), 479–493 (2011)

    Article  Google Scholar 

  15. Sotoudeh Z., Hodges D.H.: Incremental method for structural analysis of joined-wing aircraft. J. Aircr. 48(5), 1588–1601 (2011)

    Article  Google Scholar 

  16. Khaneh Masjedi P., Ovesy H.R.: Chebyshev collocation method for static intrinsic equations of geometrically exact beams. Int. J. Solids Struct. 54(0), 183–191 (2015)

    Article  MATH  Google Scholar 

  17. Khaneh Masjedi, P., Ovesy, H.: Large deflection analysis of geometrically exact spatial beams under conservative and nonconservative loads using intrinsic equations. Acta Mech. 226(6), 1689–1706 (2014)

  18. Bellman R., Casti J.: Differential quadrature and long-term integration. J. Math. Anal. Appl. 34(2), 235–238 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shu C., Richards B.E.: Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 15(7), 791–798 (1992)

    Article  MATH  Google Scholar 

  20. Shu C., Richard B.E.: Parallel simulation of incompressible viscous flows by generalized differential quadrature. Comput. Syst. Eng. 3(1), 271–281 (1992)

    Article  Google Scholar 

  21. Shu C., Chew Y.T., Richards B.E.: Generalized differential and integral quadrature and their application to solve boundary layer equations. Int. J. Numer. Methods Fluids 21(9), 723–733 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shu C., Chew Y.T., Khoo B.C., Yeo K.S.: Solutions of three-dimensional boundary layer equations by global methods of generalized differential-integral quadrature. Int. J. Numer. Methods Heat Fluid Flow 6(2), 61–75 (1996)

    Article  MATH  Google Scholar 

  23. Du H., Lim M.K., Lin R.M.: Application of generalized differential quadrature method to structural problems. Int. J. Numer. Methods Eng. 37(11), 1881–1896 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Du H., Lim M.K., Lin R.M.: Application of generalized differential quadrature to vibration analysis. J. Sound Vib. 181(2), 279–293 (1995)

    Article  MATH  Google Scholar 

  25. Laura, P.A.A., Gutierrez, R.H.: Analysis of vibrating Timoshenko beams using the method of differential quadrature. Shock Vib. 1(1) 89–93 (1993)

  26. Laura P.A.A., Gutierrez R.H.: Analysis of vibrating rectangular plates with non-uniform boundary conditions by using the differential quadrature method. J. Sound Vib. 173(5), 702–706 (1994)

    Article  MATH  Google Scholar 

  27. Lin R.M., Lim M.K., Du H.: Large deflection analysis of plates under thermal loading. Comput. Methods Appl. Mech. Eng. 117(3), 381–390 (1994)

    Article  MATH  Google Scholar 

  28. Du H., Liew K.M., Lim M.K.: Generalized differential quadrature method for buckling analysis. J. Eng. Mech. 122(2), 95–100 (1996)

    Article  Google Scholar 

  29. Bert C.W., Wang X., Striz A.G.: Static and free vibrational analysis of beams and plates by differential quadrature method. Acta Mech. 102(1–4), 11–24 (1994)

    Article  MATH  Google Scholar 

  30. Lin R.M., Lim M.K., Du H.: Deflection of plates with nonlinear boundary supports using generalized differential quadrature. Comput. Struct. 53(4), 993–999 (1994)

    Article  MATH  Google Scholar 

  31. Marzani A., Tornabene F., Viola E.: Nonconservative stability problems via generalized differential quadrature method. J. Sound Vib. 315(1–2), 176–196 (2008)

    Article  Google Scholar 

  32. Lal R., Saini R.: On the use of GDQ for vibration characteristic of non-homogeneous orthotropic rectangular plates of bilinearly varying thickness. Acta Mech. 226(5), 1605–1620 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bert C.W., Malik M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)

    Article  Google Scholar 

  34. Patil, M., Johnson, E.: Cross-sectional analysis of anisotropic, thin-walled, closed-section beams with embedded strain actuation. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics andMaterials Conference (Reston, Va.) 2005. American Institute of Aeronautics and Astronautics

  35. Volovoi V.V., Hodges D.H.: Theory of anisotropic thin-walled beams. J. Appl. Mech. 67(3), 453–459 (2000)

    Article  MATH  Google Scholar 

  36. Cesnik C.E.S., Hodges D.H.: VABS: a new concept for composite rotor blade cross-sectional modeling. J. Am. Helicopter Soc. 42(1), 27–38 (1997)

    Article  Google Scholar 

  37. Yu W., Hodges D.H., Volovoi V., Cesnik C.E.S.: On Timoshenko-like modeling of initially curved and twisted composite beams. Int. J. Solids Struct. 39(19), 5101–5121 (2002)

    Article  MATH  Google Scholar 

  38. Sotoudeh Z., Hodges D.H., Chang C.-S.: Validation studies for aeroelastic trim and stability of highly flexible aircraft. J. Aircr. 47(4), 1240–1247 (2010)

    Article  Google Scholar 

  39. Shu C.: Differential Quadrature and Its Application in Engineering. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  40. Simitses G.J., Hodges D.H.: Fundamentals of Structural Stability. Butterworth-Heinemann, Oxford (2006)

    MATH  Google Scholar 

  41. Kondoh K., Atluri S.N.: Large-deformation, elasto-plastic analysis of frames under nonconservative loading, using explicitly derived tangent stiffnesses based on assumed stresses. Comput. Mech. 2(1), 1–25 (1987)

    Article  MATH  Google Scholar 

  42. Wright A.D., Smith C.E., Thresher R.W., Wang J.L.C.: Vibration modes of centrifugally stiffened beams. J. Appl. Mech. 49(1), 197–202 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Shahverdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoozgar, M.R., Shahverdi, H. Analysis of nonlinear fully intrinsic equations of geometrically exact beams using generalized differential quadrature method. Acta Mech 227, 1265–1277 (2016). https://doi.org/10.1007/s00707-015-1528-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1528-7

Keywords

Navigation