Skip to main content
Log in

On a micropolar continuum approach to some problems of thermo- and electrodynamics

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new nonlinear model of a micropolar continuum is suggested. The peculiarity of the model is that the constitutive equations depend only on the strain measures associated with rotational degrees of freedom, and at the same time, the stress tensor turns out to be different from zero. This mathematical model has been created with the view of its use for modeling various processes, including processes at the micro-scale level. Following the terminology of nineteenth-century scientists, we call our model the ether model, though in its mathematical content, it differs from the nineteenth-century ether models very significantly. There may be different points of view concerning the physical meaning of our model. On the one hand, one can suppose the same meaning that nineteenth-century scientists implied in their ether models. On the other hand, one can imagine a continuum consisting of quasi- or virtual particles. The choice of one of the aforementioned physical interpretations is not important for constructing the mathematical model. Our method of modeling thermo- and electrodynamic processes is as follows. In the framework of our model, we introduce mechanical analogies of physical quantities such as temperature, entropy, the electric field vector, the magnetic induction vector. We show that under certain simplifying assumptions the equations of our model coincide with well-known equations, in particular, with Maxwell’s equations. We explore the properties of our mathematical model in its most general form, investigate what processes can be described in the framework of our model, and suggest a possible interpretation of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dixon, R.C., Eringen, A.C.: A dynamical theory of polar elastic dielectrics—I. Int. J. Eng. Sci. 2, 359–377 (1964)

    Google Scholar 

  2. Dixon, R.C., Eringen, A.C.: A dynamical theory of polar elastic dielectrics—II. Int. J. Eng. Sci. 3, 379–398 (1965)

    Article  MathSciNet  Google Scholar 

  3. Treugolov, I.G.: Moment theory of electromagnetic effects in anisotropic solids. Appl. Math. Mech. 53(6), 992–997 (1989)

    Google Scholar 

  4. Grekova, E., Zhilin, P.: Basic equations of Kelvin’s medium and analogy with ferromagnets. J. Elast. 64, 29–70 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grekova, E.F.: Ferromagnets and Kelvin’s medium: basic equations and wave processes. J. Comput. Acoust. 9(2), 427–446 (2001)

    Article  MATH  Google Scholar 

  6. Zhilin, P.A.: Advanced Problems in Mechanics, vol. 1. Institute for Problems in Mechanical Engineering, St. Petersburg (2006). (In Russian)

    Google Scholar 

  7. Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006)

    Google Scholar 

  8. Ivanova, E.A., Kolpakov, Y.E.: Piezoeffect in polar materials using moment theory. J. Appl. Mech. Tech. Phys. 54(6), 989–1002 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ivanova, E.A., Kolpakov, Y.E.: A description of piezoelectric effect in non-polar materials taking into account the quadrupole moments. Z. Angew. Math. Mech. 96(9), 1033–1048 (2016)

    Article  MathSciNet  Google Scholar 

  10. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Micromorphic theory of superconductivity. Phys. Rev. 106(1), 162–164 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eringen, A.C.: Continuum theory of micromorphic electromagnetic thermoelastic solids. Int. J. Eng. Sci. 41, 653–665 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galeş, C., Ghiba, I.D., Ignătescu, I.: Asymptotic partition of energy in micromorphic thermopiezoelectricity. J. Therm. Stress. 34, 1241–1249 (2011)

    Article  Google Scholar 

  13. Tiersten, H.F.: Coupled magnetomechanical equations for magnetically saturated insulators. J. Math. Phys. 5(9), 1298–1318 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. Elsevier Science Publishers, Oxford (1988)

    MATH  Google Scholar 

  15. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua. Springer, New York (1990)

    Book  Google Scholar 

  16. Fomethe, A., Maugin, G.A.: Material forces in thermoelastic ferromagnets. Contin. Mech. Thermodyn. 8, 275–292 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shliomis, M.I., Stepanov, V.I.: Rotational viscosity of magnetic fluids: contribution of the Brownian and Neel relaxational processes. J. Magn. Magn. Mater. 122, 196–199 (1993)

    Article  Google Scholar 

  18. Zhilin, P.A.: Rational Continuum Mechanics. Polytechnic University Publishing House, St. Petersburg (2012). (In Russian)

    Google Scholar 

  19. Ivanova, E.A.: A new model of a micropolar continuum and some electromagnetic analogies. Acta Mech. 226, 697–721 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215, 261–286 (2010)

    Article  MATH  Google Scholar 

  21. Ivanova, E.A.: On one model of generalized continuum and its thermodynamical interpretation. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua, pp. 151–174. Springer, Berlin (2011)

    Chapter  Google Scholar 

  22. Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component Cosserat continuum. Tech. Mech. 32, 273–286 (2012)

    Google Scholar 

  23. Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two-component Cosserat continuum. Acta Mech. 225, 757–795 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ivanova, E.A.: Description of nonlinear thermal effects by means of a two-component Cosserat continuum. Acta Mech. 228, 2299–2346 (2017). https://doi.org/10.1007/s00707-017-1829-0

    Article  MathSciNet  MATH  Google Scholar 

  25. Ivanova, E.A.: Thermal effects by means of two-component Cosserat continuum. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics, pp. 1–12. Springer, Berlin (2018). https://doi.org/10.1007/978-3-662-53605-6_66-1

    Google Scholar 

  26. Kiral, E., Eringen, A.C.: Constitutive Equations of Nonlinear Electromagnetic-Elastic Crystals. Springer, New York (1990)

    Book  Google Scholar 

  27. Whittaker, E.: A History of the Theories of Aether and Electricity. The Classical Theories. Thomas Nelson and Sons Ltd, London (1910)

    MATH  Google Scholar 

  28. Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann, Paris (1909)

    MATH  Google Scholar 

  29. Mandelstam, L.I.: Lectures on Optics, Theory of Relativity and Quantum Mechanics. Nauka, Moscow (1972). (In Russian)

    Google Scholar 

  30. Hassanizadeh, M., Gray, W.: General conservation equations for multi-phase systems: 3. Constitutive theory for porous media flow. Adv. Water Resour. 3, 25 (1980)

    Article  Google Scholar 

  31. Altenbach, H., Naumenko, K., Zhilin, P.A.: A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Contin. Mech. Thermodyn. 15(6), 539–570 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gadala, M.: Recent trends in ale formulation and its applications in solid mechanics. Comput. Methods Appl. Mech. Eng. 193, 4247–4275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dettmer, W., Peric, D.: A computational framework for free surface fluid flows accounting for surface tension. Comput. Methods Appl. Mech. Eng. 195, 3038–3071 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Filipovic, N., Mijailovic, A.S., Tsuda, A., Kojic, M.: An implicit algorithm within the arbitrary Lagrangian–Eulerian formulation for solving incompressible fluid flow with large boundary motions. Comput. Methods Appl. Mech. Eng. 195, 6347–6361 (2006)

    Article  MATH  Google Scholar 

  35. Khoei, A., Anahid, M., Shahim, K.: An extended arbitrary Lagrangian–Eulerian finite element modeling (X-ALE-FEM) in powder forming processes. J. Mater. Process. Technol. 187–188, 397–401 (2007)

    Article  Google Scholar 

  36. Del Pin, F., Idelsohn, S., Onate, E.R.A.: The ALE/Lagrangian particle finite element method: a new approach to computation of free-surface flows and fluid object interactions. Comput. Fluids 36, 27–38 (2007)

    Article  MATH  Google Scholar 

  37. Ivanova, E.A., Vilchevskaya, E.N.: Description of thermal and micro-structural processes in generalized continua: Zhilin’s method and its modifications. In: Altenbach, H., Forest, S., Krivtsov, A.M. (eds.) Generalized Continua as Models for Materials with Multi-scale Effects or Under Multi-field Actions, pp. 179–197. Springer, Berlin (2013)

    Google Scholar 

  38. Vuong, A.T., Yoshihara, L., Wall, W.: A general approach for modeling interacting flow through porous media under finite deformations. Comput. Methods Appl. Mech. Eng. 283, 1240–1259 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Brazgina, O.V., Ivanova, E.A., Vilchevskaya, E.N.: Saturated porous continua in the frame of hybrid description. Contin. Mech. Thermodyn. 28(5), 1553–1581 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ivanova, E.A., Vilchevskaya, E.N.: Micropolar continuum in spatial description. Contin. Mech. Thermodyn. 28(6), 1759–1780 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: Time derivatives in material and spatial description—what are the differences and why do they concern us? In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures, pp. 3–28. Springer, Berlin (2016)

    Google Scholar 

  42. Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: A study of objective time derivatives in material and spatial description. In: Altenbach, H., Goldstein, R., Murashkin, E. (eds.) Mechanics for Materials and Technologies. Advanced Structured Materials, vol. 46, pp. 195–229. Springer, Cham (2017)

    Chapter  Google Scholar 

  43. Müller, W.H., Vilchevskaya, E.N., Weiss, W.: Micropolar theory with production of rotational inertia: a farewell to material description. Phys. Mesomech. 20(3), 250–262 (2017)

    Article  Google Scholar 

  44. Müller, W.H., Vilchevskaya, E.N.: Micropolar theory from the viewpoint of mesoscopic and mixture theories. Phys. Mesomech. 20(3), 263–279 (2017)

    Article  Google Scholar 

  45. Einstein, A., Infeld, L.: The Evolution of Physics. Cambridge University Press, London (1938)

    MATH  Google Scholar 

  46. Einstein, A.: The Collected Papers, vol. 6. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  47. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. Vol. 2. Mainly Electromagnetism and Matter. Addison Wesley Publishing Company, London (1964)

    MATH  Google Scholar 

  48. Sommerfeld, A.: Electrodynamics. Lectures on Theoretical Physics, vol. 3. Academic, New York (1964)

    Google Scholar 

  49. Tonnelat, M.-A.: The Principles of Electromagnetic Theory and of Relativity. D. Reidel Publishing Company, Dordrecht-Holland (1966)

    Book  Google Scholar 

  50. Malvern, E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall Inc, Englewood Cliffs (1969)

    Google Scholar 

  51. Truesdell, C.: A First Course in Rational Continuum Mechanics. The John Hopkins University, Baltimore (1972)

    Google Scholar 

  52. Eringen, C.: Mechanics of Continua. Robert E. Krieger Publishing Company, Huntington (1980)

    MATH  Google Scholar 

  53. Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  54. Loitsyansky, L.G.: Fluid Mechanics. Nauka, Moscow (1987). (In Russian)

    Google Scholar 

  55. Daily, J., Harleman, D.: Fluid Dynamics. Addison-Wesley, Boston (1966)

    MATH  Google Scholar 

  56. Zhilin, P.A.: Applied Mechanics. Foundations of Shells Theory. Tutorial book. Politechnic University Publishing House, St. Petersburg (2006). (In Russian)

    Google Scholar 

  57. Cataneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. C. R. 247, 431–433 (1958)

    Google Scholar 

  58. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  Google Scholar 

  59. Jou, D., Casas-Vazquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  60. Purcell, E.M.: Berkeley Physics Course. Vol. 2. Electricity and Magnetism, vol. 2. McGraw-Hill, New York (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ivanova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, E.A. On a micropolar continuum approach to some problems of thermo- and electrodynamics. Acta Mech 230, 1685–1715 (2019). https://doi.org/10.1007/s00707-019-2359-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-2359-8

Navigation