Skip to main content
Log in

A unified electromechanical finite element dynamic analysis of multiple segmented smart plate energy harvesters: circuit connection patterns

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents the techniques for formulating the multiple segmented smart plate structures with different circuit connection patterns using the electromechanical finite element dynamic analysis. There are three major contributions in the proposed numerical studies. First, the electromechanical discretization has been developed for generalizing the coupled system of Kirchhoff’s smart plate structures with circuit connection patterns. Such constitutive numerical models reduced from the extended Lagrange equations can be used for the physical systems including, but not restricted to, the multiple piezoelectric and electrode segments. Second, the multiple piezoelectric or electrode segments can be arranged electrically in parallel, series, and mixed series–parallel connections with the on–off switching techniques where the electrical outputs of each connection are further connected with the standard AC–DC circuit interfaces. Third, the coupling transformation technique (CTT) has been introduced by modifying the orthonormalized global element matrices into the scalar form equations. As a result, the multimode frequency response function and time-waveform signal response equations are distinctly formulated for each circuit connection. Further parametric numerical case studies are also discussed in this paper. The benefit of using the circuit connection patterns with the on–off switching techniques is that the studies can be used for an adaptive vibration power harvester.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tzou, H.S., Tseng, C.I.: Distributed vibration control and identification of coupled elastic/piezoelectric systems: finite element formulation and applications. Mech. Syst. Signal Process. 5, 215–231 (1991)

    Article  Google Scholar 

  2. Saravanos, D.A., Heyliger, P.R., Hopkins, D.A.: Layerwise mechanics and finite element for the dynamics analysis of piezoelectric composite plate. Int. J. Solids Struct. 34, 359–378 (1996)

    Article  Google Scholar 

  3. Lam, K.Y., Peng, X.Q., Liu, G.R., Reddy, J.N.: A finite element model for piezoelectric composite laminates. Smart Mater. Struct. 6, 583–591 (1997)

    Article  Google Scholar 

  4. Detwiler, D.T., Shen, H.M.-H., Venkayya, V.B.: Finite element analysis of laminated composite structures containing distributed piezoelectric actuators and sensors. Finite Elem. Anal. Des. 20, 87–100 (1995)

    Article  Google Scholar 

  5. Krommer, M., Irschik, H.: A Reissner–Mindlin type plate theory including the direct piezoelectric and the pyroelectric effect. Acta Mech. 141, 51–69 (2000)

    Article  Google Scholar 

  6. Ray, M.C., Sachade, H.M.: Finite element analysis of smart functionally graded plates. Int. J. Solids Struct. 43(18–19), 5468–5484 (2006)

    Article  Google Scholar 

  7. Krommer, M.: On the correction of the Bernoulli–Euler beam theory for smart piezoelectric beams. Smart Mater. Struct. 10, 668–680 (2001)

    Article  Google Scholar 

  8. Krommer, M., Irschik, H.: An electromechanically coupled theory for piezoelastic beams taking into account the charge equation of electrostatics. Acta Mech. 154, 141–158 (2002)

    Article  Google Scholar 

  9. Fernandes, A., Pouget, J.: Analytical and numerical approach to piezoelectric bimorph. Int. J. Solids Struct. 40, 4331–4352 (2003)

    Article  Google Scholar 

  10. Moita, J.M., Correia, I.F.P., Soares, C.M.M.: Active control of adaptive laminated structures with bounded piezoelectric sensors and actuators. Comput. Struct. 82(17–19), 1349–1358 (2004)

    Article  Google Scholar 

  11. Wang, S.Y.: A finite element model for the static and dynamic analysis of a piezoelectric bimorph. Int. J. Solids Struct. 41, 4075–4096 (2004)

    Article  Google Scholar 

  12. Deü, J.-F., Benjeddou, A.: Free-vibration analysis of laminated plates with embedded shear-mode piezoceramic layers. Int. J. Solids Struct. 42(7), 2059–2088 (2005)

    Article  Google Scholar 

  13. Irschik, H., Krommer, M., Belyaev, A.K., Schlacher, A.K.: Shaping of piezoelectric sensors/actuators for vibrations of slender beams: coupled theory and inappropriate shape functions. J. Intell. Mater. Syst. Struct. 9, 546–554 (1998)

    Article  Google Scholar 

  14. Maurini, C., Dell’Isola, F., Del Vescovo, D.: Comparison of piezoelectric networks acting as distributed vibration absorbers. Mech. Syst. Signal Process. 18(5), 1243–1271 (2004)

    Article  Google Scholar 

  15. Thomas, O., Deü, J.-F., Ducarne, J.: Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients. Int. J. Numer. Methods Eng. 8, 235–268 (2009)

    Article  MathSciNet  Google Scholar 

  16. Vasques, C.M.A.: Improved passive shunt vibration control of smart piezo-elastic beams using modal piezoelectric transducers with shaped electrodes. Smart Mater. Struct. 21, 125003 (2012)

    Article  Google Scholar 

  17. Schoeftner, J., Krommer, M.: Single point vibration control for a passive piezoelectric Bernoulli–Euler beam subjected to spatially varying harmonic loads. Acta Mech. 223, 1983–1998 (2012)

    Article  MathSciNet  Google Scholar 

  18. Lossouarn, B., Deü, J.-F., Aucejo, M., Cunefare, K.A.: Multimodal vibration damping of a plate by piezoelectric coupling to its analogous electrical network. Smart Mater. Struct. 25, 115042 (2016)

    Article  Google Scholar 

  19. Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 18, 1131–1142 (2004)

    Article  Google Scholar 

  20. Lefeuvre, E., Badel, A., Richard, C., Petit, L., Guyomar, D.: A comparison between several vibration-powered piezoelectric generators for standalone systems. Sens. Actuat. A Phys. 126, 405–416 (2006)

    Article  Google Scholar 

  21. Shu, Y.C., Lien, I.C.: Analysis of power outputs for piezoelectric energy harvesting systems. Smart Mater. Struct. 15, 1499–1512 (2006)

    Article  Google Scholar 

  22. Shu, Y.C., Lien, I.C., Wu, W.J.: An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Mater. Struct. 16, 2253–2264 (2007)

    Article  Google Scholar 

  23. Lallart, M., Guyomar, D.: An optimized self-powered switching circuit for nonlinear energy harvesting with low voltage output. Smart Mater. Struct. 17, 035030 (2008)

    Article  Google Scholar 

  24. Kim, M., Hoegen, M., Dugundji, J., Wardle, B.L.: Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Mater. Struct. 19, 045023 (2010)

    Article  Google Scholar 

  25. Goldschmidtboeing, F., Woias, P.: Characterization of different beam shapes for piezoelectric energy harvesting. J. Micromech. Microeng. 18, 104013 (2008)

    Article  Google Scholar 

  26. Dalzell, P., Bonello, P.: Analysis of an energy harvesting piezoelectric beam with energy storage circuit. Smart Mater. Struct. 21, 105029 (2012)

    Article  Google Scholar 

  27. Erturk, A.: Assumed-modes modeling of piezoelectric energy harvesters: Euler–Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Comput. Struct. 106–107, 214–227 (2012)

    Article  Google Scholar 

  28. Wang, H., Meng, Q.: Analytical modeling and experimental verification of vibration-based piezoelectric bimorph beam with a tip-mass for power harvesting. Mech. Syst. Signal Process. 36, 193–209 (2013)

    Article  Google Scholar 

  29. Lumentut, M.F., Howard, I.M.: Analytical and experimental comparisons of electromechanical vibration response of a piezoelectric bimorph beam for power harvesting. Mech. Syst. Signal Process. 36, 66–86 (2013)

    Article  Google Scholar 

  30. Adhikari, S., Friswell, M.I., Inman, D.J.: Piezoelectric energy harvesting from broadband random vibrations. Smart Mater. Struct. 18, 115005 (2009)

    Article  Google Scholar 

  31. Lumentut, M.F., Howard, I.M.: Parametric design-based modal damped vibrational piezoelectric energy harvesters with arbitrary proof mass offset: numerical and analytical validations. Mech. Syst. Signal Proc. 68, 562–586 (2016)

    Article  Google Scholar 

  32. Tang, L., Wang, J.: Size effect of tip mass on performance of cantilevered piezoelectric energy harvester with a dynamic magnifier. Acta Mech. 228(11), 3997–4015 (2017)

    Article  MathSciNet  Google Scholar 

  33. Lumentut, M.F., Howard, I.M.: Intrinsic electromechanical dynamic equations for piezoelectric power harvesters. Acta Mech. 228(2), 631–650 (2017)

    Article  MathSciNet  Google Scholar 

  34. Wickenheiser, A.M.: Eigensolution of piezoelectric energy harvesters with geometric discontinuities: analytical modelling and validation. J. Intell. Mater. Syst. Struct. 24, 729–744 (2013)

    Article  Google Scholar 

  35. Zhou, S., Hobeck, J.D., Cao, J., Inman, D.J.: Analytical and experimental investigation of flexible longitudinal zigzag structures for enhanced multi-directional energy harvesting. Smart Mater. Struct. 26, 035008 (2017)

    Article  Google Scholar 

  36. Lumentut, M.F., Howard, I.M.: Effect of shunted piezoelectric control for tuning piezoelectric power harvesting system responses–analytical techniques. Smart Mater. Struct. 24, 105029 (2015)

    Article  Google Scholar 

  37. Lumentut, M.F., Howard, I.M.: Electromechanical analysis of an adaptive piezoelectric energy harvester controlled by two segmented electrodes with shunt circuit networks. Acta Mech. 228(4), 1321–1341 (2017)

    Article  Google Scholar 

  38. Lumentut, M.F., Francis, L.A., Howard, I.M.: Analytical techniques for broadband multielectromechanical piezoelectric bimorph beams with multifrequency power harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1555–1568 (2012)

    Article  Google Scholar 

  39. Zhang, H., Afzalul, K.: Design and analysis of a connected broadband multi-piezoelectric-bimorph-beam energy harvester. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1016–1023 (2014)

    Article  Google Scholar 

  40. Xiong, X., Oyadiji, S.O.: Modal optimization of doubly clamped base-excited multilayer broadband vibration energy harvesters. J. Intel. Mat. Syst. Struct. 26(16), 2216–2241 (2014)

    Article  Google Scholar 

  41. Lien, I.C., Shu, Y.C.: Array of piezoelectric energy harvesting by the equivalent impedance approach. Smart Mater. Struct. 21, 082001 (2012)

    Article  Google Scholar 

  42. Lin, H.C., Wu, P.H., Lien, I.C., Shu, Y.C.: Analysis of an array of piezoelectric energy harvesters connected in series. Smart Mater. Struct. 22, 094026 (2013)

    Article  Google Scholar 

  43. Wu, P.H., Shu, Y.C.: Finite element modeling of electrically rectified piezoelectric energy harvesters. Smart Mater. Struct. 24, 094008 (2015)

    Article  Google Scholar 

  44. Aridogan, U., Basdogan, I., Erturk, A.: Multiple patch-based broadband piezoelectric energy harvesting on plate-based structures. J. Intell. Mater. Syst. Struct 25(14), 1664–1680 (2014)

    Article  Google Scholar 

  45. Bayik, B., Aghakhani, A., Basdogan, I., Erturk, A.: Equivalent circuit modeling of a piezo-patch energy harvester on a thin plate with AC–DC conversion. Smart Mater. Struct. 25, 055015 (2016)

    Article  Google Scholar 

  46. Yoon, H., Youn, B.D., Kim, H.S.: Kirchhoff plate theory-based electromechanically-coupled analytical model considering inertia and stiffness effects of a surface-bonded piezoelectric patch. Smart Mater. Struct. 25, 025017 (2016)

    Article  Google Scholar 

  47. Samanta, B., Ray, M.C., Bhatacharya, R.: Finite element model for active control of intelligent structures. AIAA J. 34(9), 1885–1893 (1996)

    Article  Google Scholar 

  48. Liu, G.R., Dai, K.Y., Lim, K.M.: Static and vibration control composite laminates integrated with piezoelectric sensors and actuators using the radial point interpolation method. Smart Mater. Struct. 13, 1438–1447 (2004)

    Article  Google Scholar 

  49. Kapuria, S., Yaqoob Yasin, M.: Active vibration control of smart plates using directional actuation and sensing capability of piezoelectric composites. Acta Mech. 224, 1185–1199 (2013)

    Article  MathSciNet  Google Scholar 

  50. Venkata, R.K., Raja, S., Munikenche Gowda, T.: Finite element modelling and vibration control study of active plate with debonded piezoelectric actuators. Acta Mech. 225, 2923–2942 (2014)

    Article  MathSciNet  Google Scholar 

  51. Elvin, N.G., Elvin, A.A.: Coupled finite element-circuit simulation model for analyzing piezoelectric energy generators. J. Intell. Mater. Syst. Struct. 20, 587–595 (2009)

    Article  Google Scholar 

  52. Friswell, M.I., Adhikari, S.: Sensor shape design for piezoelectric cantilever beams to harvest vibration energy. J. Appl. Phys. 108, 014901 (2010)

    Article  Google Scholar 

  53. DeMarqui Jr., J., Erturk, A., Inman, D.J.: An electromechanical finite element model for piezoelectric energy harvester plates. J. Sound Vib. 327(1–2), 9–25 (2009)

    Article  Google Scholar 

  54. Aladwani, A., Arafa, M., Aldraihem, O., Baz, A.: Cantilevered piezoelectric energy harvester with a dynamic magnifier. J. Vib. Acoust. 134, 031004 (2012)

    Article  Google Scholar 

  55. Lumentut, M.F., Howard, I.M.: Electromechanical finite element modelling for dynamic analysis of a cantilevered piezoelectric energy harvester with tip mass offset under base excitations. Smart Mater. Struct. 23(9), 095037 (2014)

    Article  Google Scholar 

  56. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)

    Google Scholar 

  57. Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices. Clarendon, Oxford (1984)

    MATH  Google Scholar 

  58. Ikeda, T.: Fundamentals of Piezoelectricity. Oxford University Press, New York (1990)

    Google Scholar 

  59. Lumentut, M.F.: Mathematical dynamics of electromechanical piezoelectric energy harvester. PhD Thesis Curtin University, Australia (2011). http://espace.library.curtin.edu.au/R/?func=dbin-jump-full&object_id=186549&local_ base=gen01-era02

  60. Kirchhoff, G.R.: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. 40, 51–88 (1850)

    Article  MathSciNet  Google Scholar 

  61. Sokolnikoff, I.S.: Mathematical Theory of Elasticity, 2nd edn. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  62. Adini, A., Clough, R.W.: Analysis of plate bending by the finite element method. Report submitted to the National Science Foundation, G7337 (1960)

  63. Melosh, R.J.: Basis for derivation of matrices for the direct stiffness method. AIAA J. 1, 1631–1637 (1963)

    Article  Google Scholar 

  64. Petyt, M.: Introduction to Finite Element Vibration Analysis, 2nd edn. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  65. Ottman, G.K., Hofmann, H.F., Bhatt, A.C., Lesieutre, G.A.: Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 17(5), 669–676 (2002)

    Article  Google Scholar 

  66. http://www.efunda.com/materials/piezo/material_data/matdata_output.cfm?Material_ID=PZT-5A. Accessed 15 Jan 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Lumentut.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lumentut, M.F., Shu, Y.C. A unified electromechanical finite element dynamic analysis of multiple segmented smart plate energy harvesters: circuit connection patterns. Acta Mech 229, 4575–4604 (2018). https://doi.org/10.1007/s00707-018-2249-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2249-5

Navigation