Skip to main content
Log in

Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Free vibration of functionally graded material (FGM) nanobeams is investigated by considering surface effects including surface elasticity, surface stress, and surface density as well as the piezoelectric field using nonlocal elasticity theory. The balance conditions between the nanobeam bulk and its surfaces are satisfied assuming a cubic variation for the normal stress, \({\sigma_{zz}}\) , through the piezoelectric FG nanobeam thickness. Accordingly, the surface density is introduced into the governing equation of the free vibration of nanobeams. The results are obtained for various gradient indices, voltage values of the piezoelectric field, nanobeam lengths, and mode numbers. It is shown that making changes to voltage values and modifying mechanical properties of piezoelectric FGM nanobeams are two main approaches to achieve desired natural frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu Y., Du H., Zhang S.: Functionally graded TiN/TiNi shape memory alloy films. Mater. Lett. 57(20), 2995–2999 (2003)

    Article  Google Scholar 

  2. Lee Z., Ophus C., Fischer L., Nelson-Fitzpatrick N., Westra K., Evoy S., Radmilovic V., Dahmen U., Mitlin D.: Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology 17(12), 3063–3070 (2006)

    Article  Google Scholar 

  3. Witvrouw A., Mehta A.: The use of functionally graded poly-SiGe layers for MEMS applications. Mater. Sci. Forum 492, 255–260 (2005)

    Article  Google Scholar 

  4. Bai X., Gao P., Wang Z.L., Wang E.: Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 82(26), 4806–4808 (2003)

    Article  Google Scholar 

  5. Fei P., Yeh P.-H., Zhou J., Xu S., Gao Y., Song J., Gu Y., Huang Y., Wang Z.L.: Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire. Nano Lett. 9(10), 3435–3439 (2009)

    Article  Google Scholar 

  6. He J.H., Hsin C.L., Liu J., Chen L.J., Wang Z.L.: Piezoelectric gated diode of a single ZnO nanowire. Adv. Mater. 19(6), 781–784 (2007)

    Article  Google Scholar 

  7. Wang Z.L., Song J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242–246 (2006)

    Article  Google Scholar 

  8. Zhong Z., Wang D., Cui Y., Bockrath M.W., Lieber C.M.: Nanowire crossbar arrays as address decoders for integrated nanosystems. Science 302(5649), 1377–1379 (2003)

    Article  Google Scholar 

  9. Vetyukov Y., Kuzin A., Krommer M.: Asymptotic splitting in the three-dimensional problem of elasticity for non-homogeneous piezoelectric plates. Int. J. Solids Struct. 48(1), 12–23 (2011)

    Article  MATH  Google Scholar 

  10. Mauritsson K.: Modelling of finite piezoelectric patches: comparing an approximate power series expansion theory with exact theory. Int. J. Solids Struct. 46(5), 1053–1065 (2009)

    Article  MATH  Google Scholar 

  11. Mauritsson K., Boström A., Folkow P.D.: Modelling of thin piezoelectric layers on plates. Wave Motion 45(5), 616–628 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Krommer M.: On the correction of the Bernoulli–Euler beam theory for smart piezoelectric beams. Smart Mater. Struct. 10(4), 668–680 (2001)

    Article  Google Scholar 

  13. Krommer M.: The significance of non-local constitutive relations for composite thin plates including piezoelastic layers with prescribed electric charge. Smart Mater. Struct. 12(3), 318–330 (2003)

    Article  Google Scholar 

  14. Schoeftner J., Krommer M.: Single point vibration control for a passive piezoelectric Bernoulli–Euler beam subjected to spatially varying harmonic loads. Acta Mech. 223, 1983–1998 (2012). doi:10.1007/s00707-012-0686-0

    Article  MATH  MathSciNet  Google Scholar 

  15. Gheshlaghi B., Hasheminejad S.M.: Vibration analysis of piezoelectric nanowires with surface and small scale effects. Curr. Appl. Phys. 12(4), 1096–1099 (2012)

    Article  Google Scholar 

  16. Samaei A.T., Bakhtiari M., Wang G.-F.: Timoshenko beam model for buckling of piezoelectric nanowires with surface effects. Nanoscale Res. Lett. 7(1), 1–6 (2012)

    Article  Google Scholar 

  17. Krommer M.: On the influence of pyroelectricity upon thermally induced vibrations of piezothermoelastic plates. Acta Mech. 171, 59–73 (2004)

    Article  MATH  Google Scholar 

  18. Yan Z., Jiang L.: The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22(24), 245703–245709 (2011). doi:10.1088/0957-4484/22/24/245703

    Article  Google Scholar 

  19. Krommer M., Irschik H.: A Reissner–Mindlin-type plate theory including the direct piezoelectric and the pyroelectric effect. Acta Mech. 141, 51–69 (2000)

    Article  MATH  Google Scholar 

  20. Krommer M., Irschik H.: An electromechanically coupled theory for piezoelastic beams taking into account the charge equation of electrostatics. Acta Mech. 154, 141–158 (2002)

    Article  MATH  Google Scholar 

  21. Chen C., Shi Y., Zhang Y., Zhu J., Yan Y.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96(7), 075505-4 (2006). doi:10.1103/PhysRevLett.96.075505

    Google Scholar 

  22. Miller R.E., Shenoy V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)

    Article  Google Scholar 

  23. Wong E.W., Sheehan P.E., Lieber C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334), 1971–1975 (1997)

    Article  Google Scholar 

  24. Assadi A., Farshi B.: Size-dependent longitudinal and transverse wave propagation in embedded nanotubes with consi- deration of surface effects. Acta Mech. 222(1–2), 27–39 (2011)

    Article  MATH  Google Scholar 

  25. Chen T., Dvorak G.J., Yu C.: Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mech. 188(1–2), 39–54 (2007)

    Article  MATH  Google Scholar 

  26. Chiu M.-S., Chen T.: Effects of high-order surface stress on buckling and resonance behavior of nanowires. Acta Mech. 223(7), 1473–1484 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Feng Y., Liu Y., Wang B.: Finite element analysis of resonant properties of silicon nanowires with consideration of surface effects. Acta Mech. 217(1–2), 149–155 (2011)

    Article  MATH  Google Scholar 

  28. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. An. 57(4), 291–323 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gurtin M.E., Murdoch A.I.: Addenda to our paper A continuum theory of elastic material surfaces. Arch. Ration. Mech. An. 59(4), 389–390 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  30. He J., Lilley C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8(7), 1798–1802 (2008)

    Article  Google Scholar 

  31. Lu P., He L., Lee H., Lu C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43(16), 4631–4647 (2006)

    Article  MATH  Google Scholar 

  32. Nazemnezhad R., Salimi M., Hosseini-Hashemi Sh., Asgharifard Sharabiani P.: An analytical study on the nonlinear free vibration of nanoscale beams incorporating surface density effects. Compos. Part B-Eng. 43, 2893–2897 (2012)

    Article  Google Scholar 

  33. Hosseini-Hashemi Sh., Nazemnezhad R.: An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. Part B-Eng. 52, 199–206 (2013)

    Article  Google Scholar 

  34. Zhang J., Wang C., Adhikari S.: Surface effect on the buckling of piezoelectric nanofilms. J. Phys. D Appl. Phys. 45(28), 285301–285308 (2012)

    Article  Google Scholar 

  35. Bedroud, M., Hosseini-Hashemi, Sh., Nazemnezhad, R.: Buckling of circular/annular Mindlin nanoplates via nonlocal elasticity. Acta Mech. (2013). doi:10.1007/s00707-013-0891-5

  36. Bedroud M., Hosseini-Hashemi Sh., Nazemnezhad R.: Axisymmetric/asymmetric buckling of circular/annular nanoplates via nonlocal elasticity. Modares Mech. Eng. 13(5), 144–152 (2013)

    Google Scholar 

  37. Ece M., Aydogdu M.: Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech. 190(1–4), 185–195 (2007)

    Article  MATH  Google Scholar 

  38. Farajpour A., Mohammadi M., Shahidi A., Mahzoon M.: Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model. Physica E 43(10), 1820–1825 (2011)

    Article  Google Scholar 

  39. Hosseini-Hashemi Sh., Bedroud M., Nazemnezhad R.: An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity. Compos. Struct. 103, 108–118 (2013)

    Article  Google Scholar 

  40. Hosseini-Hashemi Sh., Zare M., Nazemnezhad R.: An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity. Compos. Struct. 100, 290–299 (2013)

    Article  Google Scholar 

  41. Ke L.-L., Wang Y.-S.: Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater. Struct. 21(2), 025018-12 (2012)

    Article  MathSciNet  Google Scholar 

  42. Lim C., Xu R.: Analytical solutions for coupled tension-bending of nanobeam-columns considering nonlocal size effects. Acta Mech. 223(4), 789–809 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Lei X.-w., Natsuki T., Shi J.-x., Ni Q.-q.: Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos. Part B-Eng. 43(1), 64–69 (2012)

    Article  Google Scholar 

  44. Wang K., Wang B.: Vibration of nanoscale plates with surface energy via nonlocal elasticity. Physica E 44(2), 448–453 (2011)

    Article  Google Scholar 

  45. Lü C., Chen W., Lim C.: Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies. Compos. Sci. Technol. 69(7), 1124–1130 (2009)

    Article  Google Scholar 

  46. Lü C., Lim C., Chen W.: Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int. J. Solids Struct. 46(5), 1176–1185 (2009)

    Article  MATH  Google Scholar 

  47. Ke L.-L., Wang Y.-S., Wang Z.-D.: Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 94(6), 2038–2047 (2012)

    Article  Google Scholar 

  48. Chen T., Chiu M.-S., Weng C.-N.: Derivation of the generalized Young–Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100(7), 074308-5 (2006). doi:10.1063/1.2356094

    Google Scholar 

  49. Gurtin M., Weissmüller J., Larche F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78(5), 1093–1109 (1998)

    Article  Google Scholar 

  50. Wang G.-F., Feng X.-Q.: Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90(23), 231904-3 (2007). doi:10.1063/1.2746950

    Google Scholar 

  51. Eltaher M., Emam S.A., Mahmoud F.: Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct. 96, 82–88 (2013)

    Article  Google Scholar 

  52. Arash B., Wang Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comp. Mater. Sci. 51(1), 303–313 (2012)

    Article  Google Scholar 

  53. Thai H.-T.: A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 52, 56–64 (2012)

    Article  MathSciNet  Google Scholar 

  54. Ansari R., Sahmani S., Arash B.: Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett. A 375(1), 53–62 (2010)

    Article  Google Scholar 

  55. Arash B., Ansari R.: Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Physica E 42(8), 2058–2064 (2010)

    Article  Google Scholar 

  56. Duan W., Wang C.M., Zhang Y.: Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101(2), 024305-7 (2007). doi:10.1063/1.2423140

    Google Scholar 

  57. Wang Q., Wang C.: The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18(7), 075702-4 (2007). doi:10.1088/0957-4484/18/7/075702

    Google Scholar 

  58. Eringen A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  59. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Nazemnezhad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini-Hashemi, S., Nahas, I., Fakher, M. et al. Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity. Acta Mech 225, 1555–1564 (2014). https://doi.org/10.1007/s00707-013-1014-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-1014-z

Keywords

Navigation