Skip to main content
Log in

On the numerical investigation of size and surface effects on nonlinear dynamics of a nanoresonator under electrostatic actuation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This study aims to investigate the influences of nanostructure parameter and surface elasticity parameters on the nonlinear vibration of a nanoelectromechanical system under double-sided electrostatic actuation. For this, the effects of size dependency and surface energy are modeled through applying the consistent couple-stress theory together with the Gurtin–Murdoch elasticity theory. Taking into account the midplane stretching effect for doubly clamped boundary conditions, the nonlinear strain–displacement relationship is considered based on the Euler–Bernoulli beam assumption. Hamilton’s principle is utilized in order to establish the governing differential motion’s equation, and reduced-order model is obtained through implementing Galerkin’s procedure. Bifurcation diagrams are plotted to capture the steady-state response of the system with varying the nondimensional parameter, the ratio of AC to DC voltage amplitude. The influences of the length-scale parameter, surface elasticity modulus and density, and residual surface stress on the system dynamic response have been explored. The results reveal that the pull-in excitation frequency is highly influenced by these parameters, and also the interval length of the bifurcation parameter corresponding to the periodic and chaotic motions is extremely shifted by the amount of couple-stress and residual surface stress parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haque M, Saif MA (2002) Mechanical behavior of 30–50 nm thick aluminum films under uniaxial tension. Scr Mater 47(12):863–867

    Article  Google Scholar 

  2. Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51(6):1059–1074

    Article  MATH  Google Scholar 

  3. Aifantis EC (1999) Strain gradient interpretation of size effects. In: Bažant ZP, Rajapakse YDS (eds) Fracture scaling. Springer, Dordrecht, pp 299–314. https://doi.org/10.1007/978-94-011-4659-3_16

    Chapter  Google Scholar 

  4. Nikpourian A, Ghazavi MR, Azizi S (2018) On the nonlinear dynamics of a piezoelectrically tuned micro-resonator based on non-classical elasticity theories. Int J Mech Mater Des 14(1):1–19

    Article  Google Scholar 

  5. Karimipour I, Beni YT, Koochi A, Abadyan M (2016) Using couple stress theory for modeling the size-dependent instability of double-sided beam-type nanoactuators in the presence of Casimir force. J Braz Soc Mech Sci Eng 38(6):1779–1795

    Article  Google Scholar 

  6. Bornassi S, Haddadpour H (2017) Nonlocal vibration and pull-in instability analysis of electrostatic carbon-nanotube based NEMS devices. Sens Actuators A 266:185–196

    Article  Google Scholar 

  7. Li L, Tang H, Hu Y (2018) Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Compos Struct 184:1177–1188

    Article  Google Scholar 

  8. Keivani M, Koochi A, Kanani A, Navazi HM, Abadyan M (2017) Modeling the coupled effects of surface layer and size effect on the static and dynamic instability of narrow nano-bridge structure. J Braz Soc Mech Sci Eng 39(5):1735–1744

    Article  Google Scholar 

  9. Kambali PN, Nikhil V, Pandey AK (2017) Surface and nonlocal effects on response of linear and nonlinear NEMS devices. Appl Math Model 43:252–267

    Article  MathSciNet  Google Scholar 

  10. Pourkiaee SM, Khadem SE, Shahgholi M (2016) Parametric resonances of an electrically actuated piezoelectric nanobeam resonator considering surface effects and intermolecular interactions. Nonlinear Dyn 84:1943–1960

    Article  MATH  Google Scholar 

  11. Hajnayeb A, Khadem S (2011) Nonlinear vibrations of a carbon nanotube resonator under electrical and van der Waals forces. J Comput Theor Nanosci 8(8):1527–1534

    Article  Google Scholar 

  12. Hajnayeb A, Khadem S (2012) Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation. J Sound Vib 331(10):2443–2456

    Article  Google Scholar 

  13. Oskouie MF, Ansari R, Sadeghi F (2017) Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory. Acta Mech Solida Sin 30(4):416–424

    Article  Google Scholar 

  14. Rahmanian S, Ghazavi MR, Hosseini-Hashemi S (2018) Effects of size, surface energy and Casimir force on the superharmonic resonance characteristics of a double-layered viscoelastic NEMS device under piezoelectric actuations. Iran J Sci Technol Trans Mech Eng. https://doi.org/10.1007/s40997-018-0161-1

    Article  Google Scholar 

  15. SoltanRezaee M, Afrashi M, Rahmanian S (2018) Vibration analysis of thermoelastic nano-wires under Coulomb and dispersion forces. Int J Mech Sci 142–143:33–43

    Article  Google Scholar 

  16. Dai H, Zhao D, Zou J, Wang L (2016) Surface effect on the nonlinear forced vibration of cantilevered nanobeams. Physica E 80:25–30

    Article  Google Scholar 

  17. Chen H-K, Lee C-I (2004) Anti-control of chaos in rigid body motion. Chaos Solitons Fractals 21(4):957–965

    Article  MathSciNet  MATH  Google Scholar 

  18. Chau K, Wang Z (2011) Chaos in electric drive systems: analysis, control and application. Wiley, New York

    Book  Google Scholar 

  19. Rong CG, Xiaoning D (1998) From chaos to order: methodologies, perspectives and applications, vol 24. World Scientific, Singapore

    Google Scholar 

  20. Boccaletti S, Grebogi C, Lai Y-C, Mancini H, Maza D (2000) The control of chaos: theory and applications. Phys Rep 329(3):103–197

    Article  MathSciNet  Google Scholar 

  21. Chen G (1999) Controlling chaos and bifurcations in engineering systems. CRC Press, Boca Raton

    Google Scholar 

  22. Amorim TD, Dantas WG, Gusso A (2015) Analysis of the chaotic regime of MEMS/NEMS fixed–fixed beam resonators using an improved 1DOF model. Nonlinear Dyn 79(2):967–981

    Article  Google Scholar 

  23. Sabarathinam S, Thamilmaran K (2016) Implementation of analog circuit and study of chaotic dynamics in a generalized duffing-type MEMS resonator. Nonlinear Dyn 87:2345–2356

    Article  Google Scholar 

  24. DeMartini BE, Butterfield HE, Moehlis J, Turner KL (2007) Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation. J Microelectromech Syst 16(6):1314–1323

    Article  Google Scholar 

  25. Zhang W-M, Tabata O, Tsuchiya T, Meng G (2011) Noise-induced chaos in the electrostatically actuated MEMS resonators. Phys Lett A 375(32):2903–2910

    Article  MATH  Google Scholar 

  26. Miandoab EM, Yousefi-Koma A, Pishkenari HN, Tajaddodianfar F (2015) Study of nonlinear dynamics and chaos in MEMS/NEMS resonators. Commun Nonlinear Sci Numer Simul 22(1):611–622

    Article  MATH  Google Scholar 

  27. Seleim A, Towfighian S, Delande E, Abdel-Rahman E, Heppler G (2012) Dynamics of a close-loop controlled MEMS resonator. Nonlinear Dyn 69(1–2):615–633

    Article  Google Scholar 

  28. Han J, Zhang Q, Wang W (2015) Design considerations on large amplitude vibration of a doubly clamped microresonator with two symmetrically located electrodes. Commun Nonlinear Sci Numer Simul 22(1):492–510

    Article  Google Scholar 

  29. Ding Y, Zheng L, Xu J (2018) Stability and bifurcation analysis of micro-electromechanical nonlinear coupling system with delay. J Math Anal Appl 461(1):577–590

    Article  MathSciNet  MATH  Google Scholar 

  30. Sassi SB, Najar F (2018) Strong nonlinear dynamics of MEMS and NEMS structures based on semi-analytical approaches. Commun Nonlinear Sci Numer Simul 61:1–21

    Article  MathSciNet  Google Scholar 

  31. Tajaddodianfar F, Hairi Yazdi MR, Pishkenari HN (2015) On the chaotic vibrations of electrostatically actuated arch micro/nano resonators: a parametric study. Int J Bifurc Chaos 25(08):1550106

    Article  MATH  Google Scholar 

  32. Ni X, Ying L, Lai Y-C, Do Y, Grebogi C (2013) Complex dynamics in nanosystems. Phys Rev E 87(5):052911

    Article  Google Scholar 

  33. Luo S, Li S, Phung T, Hu J (2018) Chaotic behavior and adaptive control of the arch MEMS resonator with state constraint and sector input. IEEE Sens J 18(17):6986–6995

    Article  Google Scholar 

  34. Luo S, Li S, Tajaddodianfar F, Hu J (2018) Observer-based adaptive stabilization of the fractional-order chaotic MEMS resonator. Nonlinear Dyn 92(3):1079–1089

    Article  MATH  Google Scholar 

  35. Balthazar JM, Tusset AM, Brasil RM, Felix JL, Rocha RT, Janzen FC, Nabarrete A, Oliveira C (2018) An overview on the appearance of the Sommerfeld effect and saturation phenomenon in non-ideal vibrating systems (NIS) in macro and MEMS scales. Nonlinear Dyn 93:19–40

    Article  Google Scholar 

  36. Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48(18):2496–2510

    Article  Google Scholar 

  37. Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118

    Article  Google Scholar 

  38. Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323

    Article  MathSciNet  MATH  Google Scholar 

  39. Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14(6):431–440

    Article  MATH  Google Scholar 

  40. Ru C (2010) Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Sci China Phys Mech Astron 53(3):536–544

    Article  Google Scholar 

  41. Gupta RK (1998) Electrostatic pull-in test structure design for in situ mechanical property measurements of microelectromechanical systems (MEMS). Citeseer, Princeton

    Google Scholar 

  42. Huang J-M, Liew K, Wong C, Rajendran S, Tan M, Liu A (2001) Mechanical design and optimization of capacitive micromachined switch. Sens Actuators A 93(3):273–285

    Article  Google Scholar 

  43. Akgöz B, Civalek Ö (2011) Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int J Eng Sci 49(11):1268–1280

    Article  MathSciNet  MATH  Google Scholar 

  44. Alemansour H, Miandoab EM, Pishkenari HN (2017) Effect of size on the chaotic behavior of nano resonators. Commun Nonlinear Sci Numer Simul 44:495–505

    Article  MathSciNet  Google Scholar 

  45. Azizi S, Ghazavi M-R, Khadem SE, Rezazadeh G, Cetinkaya C (2013) Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam. Nonlinear Dyn 73(1–2):853–867

    Article  MathSciNet  MATH  Google Scholar 

  46. Pourkiaee SM, Khadem SE, Shahgholi M, Bab S (2017) Nonlinear modal interactions and bifurcations of a piezoelectric nanoresonator with three-to-one internal resonances incorporating surface effects and van der Waals dissipation forces. Nonlinear Dyn 88(3):1785–1816

    Article  Google Scholar 

  47. SoltanRezaee M, Afrashi M (2016) Modeling the nonlinear pull-in behavior of tunable nano-switches. Int J Eng Sci 109:73–87

    Article  MathSciNet  MATH  Google Scholar 

  48. SoltanRezaee M, Farrokhabadi A, Ghazavi MR (2016) The influence of dispersion forces on the size-dependent pull-in instability of general cantilever nano-beams containing geometrical non-linearity. Int J Mech Sci 119:114–124

    Article  Google Scholar 

  49. Tajaddodianfar F, Yazdi MRH, Pishkenari HN (2017) Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method. Microsyst Technol 23(6):1913–1926

    Article  Google Scholar 

  50. Hadjesfandiari AR, Dargush GF (2014) Evolution of generalized couple-stress continuum theories: a critical analysis. arXiv preprint arXiv:150103112

  51. Hadjesfandiari AR, Dargush GF (2015) Foundations of consistent couple stress theory. arXiv preprint arXiv:150906299

  52. Hadjesfandiari AR, Dargush GF (2016) Couple stress theories: Theoretical underpinnings and practical aspects from a new energy perspective. arXiv preprint arXiv:161110249

  53. Hajesfandiari A, Hadjesfandiari A, Dargush G (2018) Couple stress Rayleigh-Bénard convection in a square cavity. J Nonnewton Fluid Mech

  54. Zhu R, Pan E, Chung PW, Cai X, Liew KM, Buldum A (2006) Atomistic calculation of elastic moduli in strained silicon. Semicond Sci Technol 21(7):906

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrokh Hosseini-Hashemi.

Additional information

Technical Editor: Wallace Moreira Bessa, D.Sc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmanian, S., Ghazavi, MR. & Hosseini-Hashemi, S. On the numerical investigation of size and surface effects on nonlinear dynamics of a nanoresonator under electrostatic actuation. J Braz. Soc. Mech. Sci. Eng. 41, 16 (2019). https://doi.org/10.1007/s40430-018-1506-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1506-9

Keywords

Navigation