Skip to main content
Log in

Buckling of a column under a constant speed compression: a dynamic correction to the Euler formula

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Dynamic buckling of an elastic column under compression at constant speed is investigated assuming the first buckling mode. Two cases are considered: (1) an imperfect naturally curved column (Hoff’s statement) and (2) a perfect column with an initial lateral deflection. The range of parameters where the maximum load supported by a column exceeds the Euler static force is determined. In this range, the maximum load is represented as a function of the compression rate, slenderness ratio, and imperfection/initial deflection. We answer the following question: “How slowly should the column be compressed in order to measure static load-bearing capacity?” This question is important for the proper setup of laboratory experiments and computer simulations of buckling. Additionally, we show that the behavior of a perfect column with an initial deflection differs significantly from the behavior of an imperfect column. In particular, for a perfect column the dependence of the maximum force on the compression rate is non-monotonic. The analytical results are supported by numerical simulations and available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morozov N.F., Tovstik P.E.: Dynamic loss of stability of a rod under longitudinal load lower than the Eulerian load. Dokl. Phys. 58, 510–513 (2013)

    Article  Google Scholar 

  2. Hoff N.J.: The dynamics of the buckling of elastic columns. J. Appl. Mech. 18, 68–74 (1951)

    MathSciNet  MATH  Google Scholar 

  3. Karagiozova, D., Alves, M.: Dynamic elastic-plastic buckling of structural elements: a Review. Appl. Mech. Rev. 61 (2008)

  4. Kornev V.M.: Development of dynamic forms of stability loss of elastic systems under intensive loading over a finite time interval. J. Appl. Mech. Tech. Phys. 13, 536–541 (1974)

    Article  Google Scholar 

  5. Kornev V.M.: Asymptotic analysis of the behavior of an elastic bar under aperiodic intensive loading. J. Appl. Mech. Techn. Phys. 13(3), 398–406 (1974)

    Article  MathSciNet  Google Scholar 

  6. Markin A.V.: Buckling in an elastic rod under a time-varying load. J. Appl. Mech. Tech. Phys. 18, 134–138 (1977)

    Article  Google Scholar 

  7. Lavrentev M.A., Ishlinskii A.Yu.: Dynamic shapes of buckling of elastic systems. Dokl. Akad. Nauk SSSR 64, 779–782 (1949)

    Google Scholar 

  8. Morozov N.F., Ilin D.N., Belyaev A.K.: Dynamic buckling of a rod under axial jump loading. Dokl. Phys. 58, 191–195 (2013)

    Article  Google Scholar 

  9. Belyaev A.K., Ilin D.N., Morozov N.F.: Dynamic approach to the IshlinskyLavrentev problem. Mech. Sol. 48(5), 504–508 (2013)

    Article  Google Scholar 

  10. Morozov N.F., Tovstik P.E., Tovstik T.P.: Again on the Ishlinskii-Lavrentyev problem. Dokl. Phys. 59(4), 189–192 (2014)

    Article  MathSciNet  Google Scholar 

  11. Belyaev A.K., Morozov N.F., Tovstik P.E., Tovstik T.P.: The Ishlinskii-Lavrentev problem at the initial stage of motion. Dokl. Phys. 60, 368–371 (2015)

    Article  MathSciNet  Google Scholar 

  12. Ji W., Waas A.M.: Dynamic bifurcation buckling of an impacted column. Int. J. Eng. Sci. 46, 958–967 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mimura K., Umeda T., Yu M., Uchida Y., Yaka H.: Effects of impact velocity and slenderness ratio on dynamic buckling load for long columns. Int. J. Mod. Phys. B 22, 5596–5602 (2008)

    Article  Google Scholar 

  14. Erickson B., Nardo S.V., Patel S.A., Hoff N.J.: An experimental investigation of the maximum loads supported by elastic columns in rapid compression tests. Proc. Soc. Exp. Stress Anal. 14, 13–20 (1956)

    Google Scholar 

  15. Mimura K., Kikui T., Nishide N., Umeda T., Riku I., Hashimoto H.: Buckling behavior of clamped and intermediately-supported long rods in the static-dynamic transition velocity region. J. Soc. Mat. Sci. 61, 881–887 (2012)

    Article  Google Scholar 

  16. Motamarri P., Suryanarayan S.: Unified analytical solution for dynamic elastic buckling of beams for various boundary conditions and loading rates. Int. J. Mech. Sci. 56, 60–69 (2012)

    Article  Google Scholar 

  17. Sevin E.: On the elastic bending of columns due to dynamic axial forces including effects of axial inertia. J. Appl. Mech. 27, 125–131 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dym C.L., Rasmussen M.L.: On a perturbation problem in structural dynamics. Int. J. Non-Lin. Mech. 3, 215–225 (1968)

    Article  MATH  Google Scholar 

  19. Elishakoff I.: Hoff’s problem in a probabilistic setting. J. App. Mech. 47, 403–408 (1980)

    Article  MATH  Google Scholar 

  20. Vaughn D.G., Canning J.M., Hutchinson J.W.: Coupled plastic wave propagation and column buckling. J. Appl. Mech. 72, 139–146 (2005)

    Article  MATH  Google Scholar 

  21. Kounadis A.N., Mallis J.: Dynamic stability of initially crooked columns under a time-dependent axial displacement of their support. Q. J. Mech. Math. 41, 580–596 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Tyler Jr., C.M.: Discussion of reference [2]. J. App. Mech. 18, 317 (1951)

  23. Petrov Y.V., Utkin A.A.: Time dependence of the spall strength under nanosecond loading. Tech. Phys. 60, 1162–1166 (2015)

    Article  Google Scholar 

  24. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  25. Kuzkin, V.A.: Structural model for the dynamic buckling of a column under constant rate compression arXiv:1506.00427 [physics.class-ph] (2015)

  26. Verlet L.: Computer “experiments” on classical fluids. I. Thermodynamical, properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  Google Scholar 

  27. Herrmann, J.: Dynamic stability of structures—Proceedings of an International Conference Held at Northwestern University, Evanston, Illinois. In: Hoff, N. J.: Dynamic Stability of Structures (keynote address), pp. 7–44, Pergamon Press, Bristol (1965)

  28. Eremeyev V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tang C.Y., Zhang L.C., Mylvaganam K.: Rate dependent deformation of a silicon nanowire under uniaxial compression: Yielding, buckling and constitutive description. Comp. Mat. Sci. 51, 117–121 (2012)

    Article  Google Scholar 

  30. Chiu M.-S., Chen T.: Effects of high-order surface stress on buckling and resonance behavior of nanowires. Acta Mech. 223, 1473–1484 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kato R., Miyazawa K., Kizuka T.: Buckling of C60 whiskers. Appl. Phys. Lett. 89, 071912–0719123 (2006)

    Article  Google Scholar 

  32. Shima H.: Buckling of Carbon Nanotubes: A State of the Art. Rev. Mater. 5, 47–84 (2012)

    Google Scholar 

  33. Annin, B.D., Alekhin, V.V., Babichev, A.V., Korobeynikov, S.N.: Molecular mechanics method applied to problems of stability and natural vibrations of single-layer carbon nanotubes. Mech. Sol. 47 (2012)

  34. Sarvestani H.Y., Naghashpour A.: Analytical and numerical investigations on buckling behavior of nanotube structures. Acta Mech. 226, 3695–3705 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Barretta R., Marottide Sciarra F., Diaco M.: Small-scale effects in nanorods. Acta Mech. 225, 1945–1953 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly A. Kuzkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzkin, V.A., Dannert, M.M. Buckling of a column under a constant speed compression: a dynamic correction to the Euler formula. Acta Mech 227, 1645–1652 (2016). https://doi.org/10.1007/s00707-016-1586-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1586-5

Keywords

Navigation