Skip to main content
Log in

Ordered rate constitutive theories in Lagrangian description for thermoviscoelastic solids without memory

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents ordered rate constitutive theories in Lagrangian description for compressible as well as incompressible homogeneous, isotropic thermoviscoelastic solids without memory in which the deviatoric stress tensor and heat vector as dependent variables in the constitutive theories are functions of temperature, temperature gradient, and the material derivatives of the conjugate strain tensor up to a desired order. The thermoelastic solids described by these theories are called ordered thermoelastic solids due to the fact that the deviatoric stress tensor and heat vector are dependent on the material derivative of the conjugate strain tensor up to a desired order. The highest order of the material derivative of the strain tensor defines the order of the thermoelastic solid or the order of the rate constitutive theory. For thermodynamic equilibrium during the evolution, the constitutive theories must be derived using (or must satisfy) the second law of thermodynamics as conservation of mass, balance of momenta, and energy balance are independent of the constitution of the matter. In this study, we consider the entropy inequality resulting from the second law of thermodynamics in Helmholtz free energy density Φ and conjugate pairs: second Piola–Kirchhoff stress tensor σ [0] and Green’s strain tensor ɛ. It is shown that when Φ is a function of the material derivatives of ɛ, the entropy inequality necessitates decomposition of σ [0] into equilibrium and deviatoric parts: \({_e{\mathbf{\sigma}}^{[0]}}\) and \({_d{\mathbf{\sigma}}^{[0]}}\). The equilibrium stress tensor is deterministic using the conditions resulting from the entropy inequality, but \({_d{\mathbf{\sigma}}^{[0]}}\) is not. The entropy inequality only requires that work expended due to \({_d{\mathbf{\sigma}}^{[0]}}\) be positive, but provides no mechanism for deriving a constitutive theory for it. In the present work, we use the theory of generators and invariants for deriving a constitutive theory for \({_d{\mathbf{\sigma}}^{[0]}}\). The constitutive theories for the heat vector q are derived using (i) conditions resulting from the entropy inequality. In the simplest case, this yields Fourier heat conduction law, and (ii) the theory of generators and invariants with at least two alternate choices of the argument tensors for q. Merits and shortcomings of the resulting theories are discussed. It is shown that the rate theories presented here describe thermoviscoelastic solids without memory. Simplified cases of the general theory are considered to demonstrate that many of the currently used models for such solids (like Kelvin–Voigt model) resemble the theory presented here, but are quite different, and the theories provide a rationale for modeling the mechanism of dissipation in thermoelastic solids that is consistent with principles of continuum mechanics and thermodynamics. One-dimensional numerical studies using the proposed rate theories and comparisons with current theories are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhikari, S.: Damping models for structural vibration Ph. D. dissertation. The University of Cambridge (2000)

  2. Boltzmann L.: Zur Theorie der elastischen Nachwirkung. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften 70, 275–306 (1874)

    Google Scholar 

  3. Bulíček M., Málek J., Rajagopal K.R.: On Kelvin-Voigt model and its generalizations. Evol. Equ. Control Theory 1, 17–42 (2012). doi:10.3934/eect.2012.1.17

    Article  MATH  MathSciNet  Google Scholar 

  4. Chin, R.C.Y.: Wave propagation in viscoelastic media. In: Proceedings of the International School of Physics Enrico Fermi, Physics of the earth’s interior, vol. 78. Varenna, Lake Como, Italy (1979)

  5. Coleman B.D.: Thermodynamics of materials with memory. Arch. Ration. Mech. Anal. 17, 1–46 (1964). doi:10.1007/BF00283864

    Google Scholar 

  6. Coleman B.D., Noll W.: On the thermostatics of continuous media. Arch. Ration. Mech. Anal. 4, 97–128 (1959). doi:10.1007/BF00281381

    Article  MathSciNet  MATH  Google Scholar 

  7. Coleman, B.D., Noll, W. (1961) Foundations of linear viscoelasticity. Rev. Mod. Phys. 33:239–249 http://rmp.aps.org/pdf/RMP/v33/i2/p2391

    Google Scholar 

  8. Cotter B.A., Rivlin R.S.: Tensors associated with time-dependent stress. Q. Appl. Math. 13, 177–182 (1955)

    MathSciNet  MATH  Google Scholar 

  9. Eringen A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, NY (1962)

    Google Scholar 

  10. Eringen A.C.: Mechanics of Continua. Wiley, Berlin (1967)

    MATH  Google Scholar 

  11. Fisher G.M.C., Gurtin M.E.: Wave propagation in the linear theory of viscoelasticity. Q. Appl. Math. 23, 257–263 (1965)

    MathSciNet  MATH  Google Scholar 

  12. Green A.E., Rivlin R.S.: The mechanics of non-linear materials with memory, part I. Arch. Ration. Mech. Anal. 1, 1–21 (1957). doi:10.1007/BF00297992

    Article  MathSciNet  MATH  Google Scholar 

  13. Green A.E., Rivlin R.S.: The mechanics of non-linear materials with memory, part III. Arch. Ration. Mech. Anal. 4, 387–404 (1960). doi:10.1007/BF00281398

    Article  MathSciNet  MATH  Google Scholar 

  14. Green A.E., Rivlin R.S., Spencer A.J.M.: The mechanics of non-linear materials with memory, part II. Arch. Ration. Mech. Anal. 3, 82–90 (1958). doi:10.1007/BF00284166

    MathSciNet  Google Scholar 

  15. Gurtin M.E., Herrera I.: On dissipation inequalities and linear viscoelasticity. Q. Appl. Math. 23, 235–245 (1965)

    MathSciNet  MATH  Google Scholar 

  16. Gurtin M.E., Sternberg E.: On the linear theory of viscoelasticity. Arch. Ration. Mech. Anal. 11, 291–356 (1962). doi:10.1007/BF00253942

    Article  MathSciNet  MATH  Google Scholar 

  17. Herrera I., Gurtin M.E.: A correspondence principle for viscoelastic wave propagation. Q. Appl. Math. 22, 360–364 (1965)

    MathSciNet  MATH  Google Scholar 

  18. Leitman, M.J., Fisher, G.M.C. (1973) The linear theory of viscoelasticity. In: Flügge, S., Truesdell, C. (eds.) Encyclopedia of Physics, vol. VIa/3, Mechanics of Solids III, pp. 1–124. Springer, Berlin

  19. Maxwell J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867). doi:10.1098/rstl.1867.0004

    Article  Google Scholar 

  20. Noll W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2, 198–226 (1958). doi:10.1007/BF00277929

    Article  MathSciNet  Google Scholar 

  21. Oldroyd J.G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A: Math. Sci. Phys. 200, 523–541 (1950). doi:10.1098/rspa.1950.0035

    Article  MathSciNet  MATH  Google Scholar 

  22. Pennisi S., Trovato M.: On the irreducibility of professor G.F. Smith’s representations for isotropic functions. Int. J. Eng. Sci. 25, 1059–1065 (1987). doi:10.1016/0020-7225(87)90097-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Pipkin A.C., Rivlin R.S.: The formulation of constitutive equations in continuum physics, part I. Arch. Ration. Mech. Anal. 4, 129–144 (1959). doi:10.1007/BF00281382

    Article  MathSciNet  MATH  Google Scholar 

  24. Rajagopal K.R.: A note on a reappraisal and generalization of the Kelvin-Voigt model. Mech. Res. Commun. 36, 232–235 (2009). doi:10.1016/j.mechrescom.2008.09.005

    Article  MATH  Google Scholar 

  25. Rivlin R.S.: Further remarks on the stress-deformation relations for isotropic materials. J. Ratio. Mech. Anal. 4, 681–702 (1955). doi:10.1512/iumj.1955.4.54025

    MathSciNet  MATH  Google Scholar 

  26. Rivlin R.S.: Stress relaxation in incompressible elastic materials at constant deformation. Q. Appl. Math. 14, 83–89 (1956)

    MathSciNet  MATH  Google Scholar 

  27. Rivlin R.S.: The constitutive equations for certain classes of deformations. Arch. Ration. Mech. Anal. 3, 304–311 (1959). doi:10.1007/BF00284182

    Article  MathSciNet  MATH  Google Scholar 

  28. Rivlin R.S.: The formulation of constitutive equations in continuum physics, part II. Arch. Ration. Mech. Anal. 4, 262–272 (1960). doi:10.1007/BF00281392

    Article  MathSciNet  MATH  Google Scholar 

  29. Rivlin R.S., Ericksen J.L.: Stress-deformation relations for isotropic materials. Indiana Univ. Math. J. 4, 323–425 (1955). doi:10.1512/iumj.1955.4.54011

    Article  MathSciNet  MATH  Google Scholar 

  30. Smith G.F.: On the minimality of integrity bases for symmetric 3 × 3 matrices. Arch. Ration. Mech. Anal. 5, 382–389 (1960). doi:10.1007/BF00252916

    Article  MATH  Google Scholar 

  31. Smith G.F.: On isentropic integrity bases. Arch. Ration. Mech. Anal. 18, 282–292 (1965). doi:10.1007/BF00251667

    Article  MATH  Google Scholar 

  32. Smith G.F.: On a fundamental error in two papers of C.C. Wang “On representations for isotropic functions, parts I and II”. Arch. Ration. Mech. Anal. 36, 161–165 (1970). doi:10.1007/BF00272240

    Article  MATH  Google Scholar 

  33. Smith G.F.: On isotropic functions of symmetric tensors, skew-symmetric tensors, and vectors. Int. J. Eng. Sci. 9, 899–916 (1971). doi:10.1016/0020-7225(71)90023-1

    Article  MATH  Google Scholar 

  34. Spencer A.J.M.: The invariants of six 3 × 3 matrices. Arch. Ration. Mech. Anal. 7, 64–77 (1961). doi:10.1007/BF00250750

    Article  MATH  Google Scholar 

  35. Spencer A.J.M.: Isotropic integrity bases for vectors and second-order tensors, part II. Arch. Ration. Mech. Anal. 18, 51–82 (1965). doi:10.1007/BF00253982

    Article  MATH  Google Scholar 

  36. Spencer A.J.M., Rivlin R.S.: Finite integrity bases for five or fewer symmetric 3 × 3 matrices. Arch. Ration. Mech. Anal. 2, 435–446 (1958). doi:10.1007/BF00277941

    Article  MathSciNet  Google Scholar 

  37. Spencer A.J.M., Rivlin R.S.: Matrices for isotropic continua. Arch. Ration. Mech. Anal. 2, 309–336 (1958). doi:10.1007/BF00277933

    Article  MathSciNet  Google Scholar 

  38. Spencer A.J.M., Rivlin R.S.: Further results in the theory of matrix polynomials. Arch. Ration. Mech. Anal. 4, 214–230 (1960). doi:10.1007/BF00281388

    Article  MathSciNet  MATH  Google Scholar 

  39. Spencer A.J.M., Rivlin R.S.: Isotropic integrity bases for vectors and second order tensors, part I. Arch. Ration. Mech. Anal. 9, 45–63 (1962). doi:10.1007/BF00250750

    Article  MathSciNet  MATH  Google Scholar 

  40. Surana K.S., Ahmadi A.R., Reddy J.N.: The k-version of finite element method for self-adjoint operators in BVP. Int. J. Comput. Eng. Sci. 3, 155–218 (2002). doi:10.1142/S1465876302000605

    Article  Google Scholar 

  41. Surana K.S., Ahmadi A.R., Reddy J.N.: The k-version of finite element method for non-self-adjoint operators in BVP. Int. J. Comput. Eng. Sci. 4, 737–812 (2003). doi:10.1142/S1465876303002179

    Article  Google Scholar 

  42. Surana K.S., Ahmadi A.R., Reddy J.N.: The k-version of finite element method for nonlinear operators in BVP. Int. J. Comput. Eng. Sci. 5, 133–207 (2004). doi:10.1142/S1465876304002307

    Article  Google Scholar 

  43. Surana K.S., Allu S., Reddy J.N., TenPas P.W.: Least squares finite element processes in h, p, k mathematical and computational framework for a non-linear conservation law. Int. J. Numer. Methods Fluids 57, 1545–1568 (2008). doi:10.1002/fld.1695

    Article  MathSciNet  MATH  Google Scholar 

  44. Surana, K.S., Moody, T.C., Reddy, J.N.: Ordered rate constitutive theories in Lagrangian description for thermoviscoelastic solids with memory. (manuscript in review) (2013)

  45. Surana, K.S., Moody, T.C., Reddy, J.N.: Rate constitutive theories of order zero in Lagrangian description for thermoelastic solids. Mech. Adv. Mater. Struct. (in print) (2013)

  46. Surana, K.S., Nunez, D., Reddy, J.N., Romkes, A.: Rate constitutive theories for ordered thermofluids. Continuum Mech. Thermodyn. 25 (2013). doi:10.1007/s00161-012-0257-6

  47. Surana, K.S., Nunez, D., Reddy, J.N., Romkes, A.: Rate constitutive theories for ordered thermoviscoelastic fluids–polymers. Continuum Mech. Thermodyn. 25 (2013). doi:10.1007/s00161-013-0295-8

  48. Surana, K.S., Reddy, J.N.: Continuum Mechanics. (in preparation) (2013)

  49. Surana K.S., Reddy J.N., Allu S.: The k-version of the finite element method for initial value problems: mathematical and computational framework. Int. J. Comput. Methods Eng. Sci. Mech. 8, 123–136 (2007). doi:10.1080/15502280701252321

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang C.C.: On representations for isotropic functions, part I: isotropic functions of symmetric tensors and vectors. Arch. Ration. Mech. Anal. 33, 249–267 (1969). doi:10.1007/BF00281278

    Article  MATH  Google Scholar 

  51. Wang C.C.: On representations for isotropic functions, part II: isotropic functions of skew-symmetric tensors, symmetric tensors, and vectors. Arch. Ration. Mech. Anal. 33, 268–287 (1969). doi:10.1007/BF00281279

    Article  Google Scholar 

  52. Wang C.C.: A new representation theorem for isotropic functions: an answer to professor G.F. Smith’s criticism of my papers on representations for isotropic functions, part I: scalar-valued isotropic functions. Arch. Ration. Mech. Anal. 36, 166–197 (1970). doi:10.1007/BF00272241

    Article  MATH  Google Scholar 

  53. Wang C.C.: A new representation theorem for isotropic functions: an answer to professor G.F. Smith’s criticism of my papers on representations for isotropic functions, part II: vector-valued isotropic functions, symmetric tensor-valued isotropic functions, and skew-symmetric tensor-valued isotropic functions. Arch. Ration. Mech. Anal. 36, 198–223 (1970). doi:10.1007/BF00272242

    Article  MATH  Google Scholar 

  54. Wang C.C.: Corrigendum to my recent papers on “Representations for isotropic functions”. Arch. Ration. Mech. Anal. 43, 392–395 (1971). doi:10.1007/BF00252004

    Article  Google Scholar 

  55. Zaremba, S.: Sur une forme perfectionnée de la théorie de la relaxation. Bulletin international de l’académie des sciences de Cracovie 1903 (1903). http://www.biodiversitylibrary.org/page/13138021

  56. Zaremba, S.: Sur une conception nouvelle des forces intérieures dans un fluide en mouvement. Mémorial des sciences mathématiques 82, 1–85 (1937). http://www.numdam.org/item?id=MSM19378210

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Surana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surana, K.S., Moody, T. & Reddy, J.N. Ordered rate constitutive theories in Lagrangian description for thermoviscoelastic solids without memory. Acta Mech 224, 2785–2816 (2013). https://doi.org/10.1007/s00707-013-0893-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0893-3

Keywords

Navigation