Skip to main content
Log in

A nonlinear electromechanical model for partially debonded thin-sheet piezoelectric actuators

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Piezoelectric thin sheets/films hold a key position in the design of some advanced electromechanical structures, such as integrated actuators, energy harvesting devices and programmable structures. The development of new advanced materials, such as metamaterials, has generated a growing interest in utilizing the nonlinear response of piezoelectric elements to achieve new desired features. Nonetheless, there has been a lack of exploration into the modelling and analysis of thin-sheet piezoelectric actuators undergoing nonlinear deformation. The current paper presents a nonlinear model of a thin-sheet piezoelectric actuator partially bonded to a linear elastic, electrically insulative host. The formulation of the problem takes into account the associated effects of the debonding and the adhesive layer on the response of the piezoelectric structure. The thin-sheet actuator is assumed as a generalized electro-elastic Euler–Bernoulli beam, characterized by the piezoelectric effect, axial and bending deformation and nonlinear deflection in the debonded part. The developed nonlinear integral equations in terms of interfacial stresses are solved using Chebyshev polynomials to determine the deformation of the actuator and the local stress fields. This nonlinear model enables the analysis of the electromechanical behaviour of actuators subjected to different in-plane electric loading, considering a range of geometries. The bending moment, axial force, displacement and interfacial stress distribution along the actuator are carefully evaluated. The current study creates valuable insights into the behaviour of such actuators with nonlinear deformation, facilitating the enhancement of actuator performance for applications in specific metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gao, X., Yang, J., Wu, J., Xin, X., Li, Z., Yuan, X., Shen, X., Dong, S.: Piezoelectric actuators and motors: materials, designs, and applications. Adv. Mater. Technol. 5(1), 1900716 (2020)

    CAS  Google Scholar 

  2. Liu, H., Zhong, J., Lee, C., Lee, S.-W., Lin, L.: A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev. 5(4), 041306 (2018)

    ADS  Google Scholar 

  3. Panda, P.: Piezoceramic materials and devices for aerospace applications. Aerospace Mater. Mater. Technol. 1, 501–518 (2017)

    Google Scholar 

  4. Jiao, P., Egbe, K.-J.I., Xie, Y., Matin Nazar, A., Alavi, A.H.: Piezoelectric sensing techniques in structural health monitoring: a state-of-the-art review. Sensors 20(13), 3730 (2020)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohith, S., Upadhya, A.R., Navin, K.P., Kulkarni, S., Rao, M.: Recent trends in piezoelectric actuators for precision motion and their applications: a review. Smart Mater. Struct. 30(1), 013002 (2020)

    ADS  Google Scholar 

  6. Aabid, A., Hrairi, M., Mohamed Ali, S.J., Ibrahim, Y.E.: Review of piezoelectric actuator applications in damaged structures: challenges and opportunities. ACS Omega 8(3), 2844–2860 (2023)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jin, H., Gao, X., Ren, K., Liu, J., Qiao, L., Liu, M., Chen, W., He, Y., Dong, S., Xu, Z., et al.: Review on piezoelectric actuators based on high performance piezoelectric materials. Ferroelectrics, and Frequency Control, IEEE Transactions on Ultrasonics (2022)

  8. Crawley, E.F., De Luis, J.: Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25(10), 1373–1385 (1987)

    ADS  Google Scholar 

  9. Crawley, E.F., Anderson, E.H.: Detailed models of piezoceramic actuation of beams. J. Intell. Mater. Syst. Struct. 1(1), 4–25 (1990)

    Google Scholar 

  10. Wang, X., Meguid, S.: On the electroelastic behavior of a thin piezoelectric actuator attached to an infinite host structure. Int. J. Solids Struct. 37(23), 3231–3251 (2000)

    Google Scholar 

  11. Yu, H., Wang, X.: Modelling and simulation of surface-bonded piezoelectric actuators with bending effects. J. Intell. Mater. Syst. Struct. 28(4), 507–520 (2017)

    CAS  Google Scholar 

  12. Sumit Kane, S., et al.: Electric field-induced nonlinear behavior of lead zirconate titanate piezoceramic actuators in bending mode. Mech. Adv. Mater. Struct. 30(10), 2111–2120 (2022)

    Google Scholar 

  13. Chen, N., Yan, P., Ouyang, J.: A generalized approach on bending and stress analysis of beams with piezoelectric material bonded. Sens. Actuat. A Phys. 290, 54–61 (2019)

    CAS  Google Scholar 

  14. Chen, P., Peng, J., Liu, H., Gao, F., Guo, W.: The electromechanical behavior of a piezoelectric actuator bonded to a graded substrate including an adhesive layer. Mech. Mater. 123, 77–87 (2018)

    Google Scholar 

  15. Chen, P., Chen, S., Liu, H., Peng, J., Gao, F.: The interface behavior of multiple piezoelectric films attaching to a finite-thickness gradient substrate. J. Appl. Mech. 87(1), 011003 (2020)

    ADS  CAS  Google Scholar 

  16. Zhang, S.-Q., Zhao, G.-Z., Rao, M.N., Schmidt, R., Yu, Y.-J.: A review on modeling techniques of piezoelectric integrated plates and shells. J. Intell. Mater. Syst. Struct. 30(8), 1133–1147 (2019)

    Google Scholar 

  17. Golub, M.V., Shpak, A.N.: Semi-analytical hybrid approach for the simulation of layered waveguide with a partially debonded piezoelectric structure. Appl. Math. Modell. 65, 234–255 (2019)

    MathSciNet  Google Scholar 

  18. Hu, H., Li, Z., Wang, X.: Modelling and analysis of piezoelectric actuators with partially debonded adhesive layers. Math. Mech. Solids 26(5), 722–737 (2021)

    MathSciNet  Google Scholar 

  19. Jin, C., Wang, X.: Analytical modelling of the electromechanical behaviour of surface-bonded piezoelectric actuators including the adhesive layer. Eng. Fract. Mech. 78(13), 2547–2562 (2011)

    Google Scholar 

  20. Wang, L., Bai, R.-X., Chen, H.: Analytical modeling of the interface crack between a piezoelectric actuator and an elastic substrate considering shear effects. Int. J. Mech. Sci. 66, 141–148 (2013)

    Google Scholar 

  21. Janbaz, S., Bobbert, F., Mirzaali, M.J., Zadpoor, A.: Ultra-programmable buckling-driven soft cellular mechanisms. Mater. Horiz. 6(6), 1138–1147 (2019)

    CAS  Google Scholar 

  22. Oliveri, G., Overvelde, J.T.: Inverse design of mechanical metamaterials that undergo buckling. Adv. Funct. Mater. 30(12), 1909033 (2020)

    CAS  Google Scholar 

  23. Hu, N., Burgueño, R.: Buckling-induced smart applications: recent advances and trends. Smart Mater. Struct. 24(6), 063001 (2015)

    ADS  Google Scholar 

  24. Khang, D.-Y., Jiang, H., Huang, Y., Rogers, J.A.: A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311(5758), 208–212 (2006)

    ADS  CAS  PubMed  Google Scholar 

  25. Huang, R., Suo, Z.: Instability of a compressed elastic film on a viscous layer. Int. J. Solids Struct. 39(7), 1791–1802 (2002)

    Google Scholar 

  26. Huang, Z., Hong, W., Suo, Z.: Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53(9), 2101–2118 (2005)

    ADS  MathSciNet  CAS  Google Scholar 

  27. Li, B., Huang, S.-Q., Feng, X.-Q.: Buckling and postbuckling of a compressed thin film bonded on a soft elastic layer: a three-dimensional analysis. Arch. Appl. Mech. 80, 175–188 (2010)

    ADS  Google Scholar 

  28. Yu, H.-H., Hutchinson, J.W.: Influence of substrate compliance on buckling delamination of thin films. Int. J. Fract. 113(1), 39–55 (2002)

    Google Scholar 

  29. Qi, Y., Kim, J., Nguyen, T.D., Lisko, B., Purohit, P.K., McAlpine, M.C.: Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11(3), 1331–1336 (2011)

    ADS  CAS  PubMed  Google Scholar 

  30. Feng, X., Yang, B.D., Liu, Y., Wang, Y., Dagdeviren, C., Liu, Z., Carlson, A., Li, J., Huang, Y., Rogers, J.A.: Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. Acs Nano 5(4), 3326–3332 (2011)

    CAS  PubMed  Google Scholar 

  31. Kim, D.-H., Ahn, J.-H., Choi, W.M., Kim, H.-S., Kim, T.-H., Song, J., Huang, Y.Y., Liu, Z., Lu, C., Rogers, J.A.: Stretchable and foldable silicon integrated circuits. Science 320(5875), 507–511 (2008)

    ADS  CAS  PubMed  Google Scholar 

  32. Kim, D.-H., Xiao, J., Song, J., Huang, Y., Rogers, J.A.: Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22(19), 2108–2124 (2010)

    CAS  PubMed  Google Scholar 

  33. Zhou, Z., Wang, D., Jiang, Q.: Piezoelectric effect on the buckling of piezoelectric thin film with viscoelastic substrate. J. Nanomech. Micromech. 4(1), A4013004 (2014)

    Google Scholar 

  34. Correa, D.M., Klatt, T., Cortes, S., Haberman, M., Kovar, D., Seepersad, C.: Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyp. J. 21(2), 193–200 (2015)

    Google Scholar 

  35. Yang, D., Mosadegh, B., Ainla, A., Lee, B., Khashai, F., Suo, Z., Bertoldi, K., Whitesides, G.M.: Buckling of elastomeric beams enables actuation of soft machines. Adv. Mater. 27(41), 6323–6327 (2015)

    CAS  PubMed  Google Scholar 

  36. Zhang, Y., Tichem, M., van Keulen, F.: Rotational snap-through behavior of multi-stable beam-type metastructures. Int. J. Mech. Sci. 193, 106172 (2021)

    Google Scholar 

  37. Rafsanjani, A., Bertoldi, K., Studart, A.R.: Programming soft robots with flexible mechanical metamaterials. Science Robotics 4(29), eaav7874 (2019)

    PubMed  Google Scholar 

  38. Bertoldi, K., Vitelli, V., Christensen, J., Van Hecke, M.: Flexible mechanical metamaterials. Nat. Rev. Mater. 2(11), 1–11 (2017)

    Google Scholar 

  39. Shi, J., Mofatteh, H., Mirabolghasemi, A., Desharnais, G., Akbarzadeh, A.: Programmable multistable perforated shellular. Adv. Mater. 33(42), 2102423 (2021)

    CAS  Google Scholar 

  40. Mhatre, S., Boatti, E., Melancon, D., Zareei, A., Dupont, M., Bechthold, M., Bertoldi, K.: Deployable structures based on buckling of curved beams upon a rotational input. Adv. Funct. Mater. 31(35), 2101144 (2021)

    CAS  Google Scholar 

  41. Chillara, V., Ramanathan, A., Dapino, M.: Self-sensing piezoelectric bistable laminates for morphing structures. Smart Mater. Struct. 29(8), 085008 (2020)

    ADS  Google Scholar 

  42. Wang, P.-H., Liu, H.-T.: Voltage-dependent modulation of effective young’s modulus and shape in piezoelectric composite metamaterials. Compos. Struct. 306, 116583 (2023)

    CAS  Google Scholar 

  43. Singh, A., Mukhopadhyay, T., Adhikari, S., Bhattacharya, B.: Voltage-dependent modulation of elastic moduli in lattice metamaterials: emergence of a programmable state-transition capability. Int. J. Solids Struct. 208, 31–48 (2021)

    Google Scholar 

  44. Singh, A., Mukhopadhyay, T., Adhikari, S., Bhattacharya, B.: Active multi-physical modulation of Poisson’s ratios in composite piezoelectric lattices: on-demand sign reversal. Compos. Struct. 280, 114857 (2022)

    CAS  Google Scholar 

  45. Torres, J., Asada, H.H.: Harmonic analysis of a PZT poly-actuator. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 842–849, IEEE, (2015)

  46. Dong, L., Wen, C., Liu, Y., Xu, Z., Closson, A.B., Han, X., Escobar, G.P., Oglesby, M., Feldman, M., Chen, Z., et al.: Piezoelectric buckled beam array on a pacemaker lead for energy harvesting. Adv. Mater. Technol. 4(1), 1800335 (2019)

    Google Scholar 

  47. Mariello, M., Blad, T., Mastronardi, V., Madaro, F., Guido, F., Staufer, U., Tolou, N., De Vittorio, M.: Flexible piezoelectric ALN transducers buckled through package-induced preloading for mechanical energy harvesting. Nano Energy 85, 105986 (2021)

    CAS  Google Scholar 

  48. Xu, C., Liang, Z., Ren, B., Di, W., Luo, H., Wang, D., Wang, K., Chen, Z.: Bi-stable energy harvesting based on a simply supported piezoelectric buckled beam. J. Appl. Phys. 114, 11 (2013)

    Google Scholar 

  49. Zareie, S., Zabihollah, A., Azizi, A.: Buckling control of morphing composite airfoil structure using multi-stable laminate by piezoelectric sensors/actuators. Behav. Mech. Multifunct. Mater. Compos. 7978, 495–500 (2011)

    Google Scholar 

  50. Wang, Q.: Active buckling control of beams using piezoelectric actuators and strain gauge sensors. Smart Mater. Struct. 19(6), 065022 (2010)

    ADS  Google Scholar 

  51. Luo, Q., Tong, L., Bambach, M., Rasmussen, K.J., Khezri, M.: Active nonlinear buckling control of optimally designed laminated plates using SMA and PZT actuators. Thin-Walled Struct. 181, 110134 (2022)

    Google Scholar 

  52. Wang, X., Huang, G.: The coupled dynamic behavior of piezoelectric sensors bonded to elastic media. J. Intell. Mater. Syst. Struct. 17(10), 883–894 (2006)

    Google Scholar 

  53. Tong, L., Sun, D., Atluri, S.N.: Sensing and actuating behaviours of piezoelectric layers with debonding in smart beams. Smart Mater. Struct. 10(4), 713 (2001)

    ADS  CAS  Google Scholar 

  54. Muskhelishvili, N.I. et al.: Some basic problems of the mathematical theory of elasticity, vol. 15. Noordhoff Groningen, (1953)

  55. Pak, Y.E.: Crack extension force in a piezoelectric material. J. App. Mech. 57(3), 647–653 (1990)

    Google Scholar 

  56. Han, L., Wang, X., Sun, Y.: The effect of bonding layer properties on the dynamic behaviour of surface-bonded piezoelectric sensors. Int. J. Solids Struct. 45(21), 5599–5612 (2008)

    CAS  Google Scholar 

Download references

Funding

The study was supported by Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Effective material constants

Appendix A: Effective material constants

The mechanical and electrical properties of piezoceramic materials can be described fully by the equation of motion

$$\begin{aligned} \sigma _{ji,j}+f_i=\rho \ddot{u}_i \end{aligned}$$
(53)

Gauss’ law

$$\begin{aligned} D_{i,i}=0 \end{aligned}$$
(54)

and the constitutive equations

$$\begin{aligned} \{\sigma \}=[c]\{\epsilon \}-[e]\{E\},\ \ \ \ \{\mathrm{{d}}\}=[e]\{\epsilon \}+[\epsilon ]\{E\} \end{aligned}$$
(55)

where

$$\begin{aligned} \epsilon _{ij}=\frac{1}{2}(u_{i,j}+u_{j,i}),\ \ E_i=-V_{,i} \end{aligned}$$
(56)

In these equations, \(\{\sigma \}\) and \(\{\epsilon \}\) are the stress and strain fields, \(f_i\) and \(\rho \) are the body force and the mass density, while \(\{\mathrm{{d}}\}\), \(\{E\}\) and V represent the electric displacement, the electric field intensity and the potential, respectively. [c] is a matrix containing the elastic stiffness parameters for a constant electric potential, [e] represents a tensor containing the piezoelectric constants and \([\epsilon ]\) represents the dielectric constants for zero strains.

According to the electro-elastic line actuator model, the effective material constants of the actuator the model under plane strain condition is given by

$$\begin{aligned} \begin{array}{ll} E^p=c_{11}-\displaystyle {\frac{c_{13}^2}{c_{33}}},\ \ \ \ e_{31}^p=e_{31}-e_{33}\displaystyle {\frac{c_{13}}{c_{33}}},\ \ \ \epsilon _{33}^p=\epsilon _{33}+\displaystyle {\frac{e^2_{33}}{c_{33}}}&\ \end{array} \end{aligned}$$
(57)

where the direction of polarization is designated as being the z-axis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, M., Wang, X. A nonlinear electromechanical model for partially debonded thin-sheet piezoelectric actuators. Acta Mech 235, 833–850 (2024). https://doi.org/10.1007/s00707-023-03774-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03774-1

Navigation