Skip to main content
Log in

Finite element analysis of localization and micro–macro structure relation in granular materials. Part I: Formulation

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The formation of strain localization influences the stability and stiffness of the soil mass or geosystem. The thickness of shear bands provides insight into overall strength and stiffness inside the granular body, and the shear band angle gives information about the failure surface in a given soil or soil mass. Thus, it is important to be able to predict when a shear band forms and how this zone of intense deformation is located and oriented within the granular medium. A rational finite element analysis for capturing the formation and development of shear bands has been formulated by using a micropolar continuum in finite element analysis. Hardening parameters including nonsymmetric stress and length scale are implemented for a realistic stress–strain analysis. Implementation and simulations of the model will be discussed in the Part II of this research. The micro–macro structure relation for finite element analysis based on this formulation paper will be simulated in the corresponding paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alsaleh M.I., Voyiadjis G.Z. and Alshibli K.A. (2006). Modeling strain localization in granular materials using micropolar theory: mathematical formulations. Int. J. Numer. Anal. Methods Geomech. 30(15): 1501–1524

    Article  Google Scholar 

  2. Alsaleh M.I., Alshibli K.A. and Voyiadjis G.Z. (2006). Influence of micro-material heterogeneity on strain localization in granular materials. ASCE Int. J. Geomech. 6(4): 248–259

    Article  Google Scholar 

  3. Alsaleh, M.I.: Numerical modeling of strain localization in granular materials using cosserat theory enhanced with microfabric properties. PhD Dissertation, Loisiana State University (2005)

  4. Alshibli K.A. and Sture S. (1999). Sand shear band thickness measurements by digital imaging techniques. J. Comput. Civil Engng. 13(2): 103–109

    Article  Google Scholar 

  5. Alshibli K.A. and Sture S. (2000). Shear band formation in plane strain experiments of sand. J. Geotech. Geoenviron. Engng. (ASCE) 126(6): 495–503

    Article  Google Scholar 

  6. Alshibli K.A., Alsaleh M.I. and Voyiadjis G.Z. (2006). Modeling strain localization in granular materials using micropolar theory: numerical implementation and verification. Int. J. Numer. Anal. Methods Geomech. 30(15): 1525–1544

    Article  Google Scholar 

  7. Arslan, H.: Localization analysis of granular materials in Cosserat elastoplasticity – Formulation and finite element implementation. PhD Dissertation, University of Colorado-Boulder (2006)

  8. Bardet J.P. and Proubet J. (1990). Shear band analysis in idealized granular material. J. Engng. Mech. 118(2): 397–415

    Google Scholar 

  9. Bardet J.P. (1990). A comprehensive review of strain localization in elastoplastic soils. Comput. Geotech. 10: 163–188

    Article  Google Scholar 

  10. Bathe K.-J. (1996). Finite Element Procedures. Prentice Hall, New Jersey

    Google Scholar 

  11. Belytschko T., Liu W.K. and Moran B. (2000). Nonlinear Finite Elements for Continua and Structure. Wiley, London

    Google Scholar 

  12. Calvetti F., Combe G. and Lanier J. (1997). Experimental micromechanical analysis of a 2D granular material: relation between structure evaluation and loading path. Mech. Cohes. Frict. Mater. 2: 121–163

    Article  Google Scholar 

  13. Chang C.S. and Ma L. (1991). A micromechanically-based micropolar theory for deformation of granular solids. Int. J. Solids Struct. 21: 67–86

    Article  Google Scholar 

  14. Cosserat E. and Cosserat F. (1909). Theorie des Corps Deformable. Hermann, Paris

    Google Scholar 

  15. de Borst R. (1991). Simulation of strain localization: a reappraisal of the Cosserat Continuum. Engng. Comput. 8: 317–332

    Article  Google Scholar 

  16. de Borst R., Sluys L., Muhlhaus H. and Pamin J. (1993). Fundamental issues in finite element analyses of localization of deformation. Engng. Comput. 10: 99–121

    Article  Google Scholar 

  17. Drucker D.C. (1954). Coulomb friction plasticity and limit loads. J. Appl. Mechanics 76: 71–74

    Google Scholar 

  18. Eringen C.A. (1999). Microcontinuum Field Theories I: Foundations and Solids. Springer, New York

    MATH  Google Scholar 

  19. Gardiner B.S. and Tordesillas A. (2004). Micromechanics of shear bands. Int. J. Solids Struct. 41: 5885–5901

    Article  MATH  Google Scholar 

  20. Herle I. (1998). A relation between parameters of a hypoplastic constitutive model and grain properties. In: Adachi, T., Oka, F. and Yashima, A. (eds) Localization and Bifurcation Theory for Soils and Rocks, pp 91–99. Balkema, Rotterdam, Brookfield

    Google Scholar 

  21. Herle I. and Gudehus G. (1999). Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mech. Cohes.-Frict. Mater. 4: 461–486

    Article  Google Scholar 

  22. Huang W. and Bouer E. (2003). Numerical investigations of shear localization in a micropolar hypoplastic material. Int. J. Numer. Anal. Meth. Geomech. 27: 325–352

    Article  MATH  Google Scholar 

  23. Maier T. (2003). Nonlocal modeling of softening in hypoplasticity. Comput. Geotech. 30: 599–610

    Article  Google Scholar 

  24. Iordache, M.M.: Failure analysis of classical and micropolar elastoplastic materials. Ph.D. Thesis, University of Colorado-Boulder (1996)

  25. Manzari M.T. (2004). Application of micropolar plasticity to post failure analysis in geomechanics. Int. J. Numer. Anal. Meth. Geomech. 28: 1011–1032

    Article  MATH  Google Scholar 

  26. Mindlin R.D. and Tiersten H.F. (1962). Effects of couple stresses in linear elasticity. Arch. Rat. Mech. Anal. 11: 415–448

    Article  MathSciNet  MATH  Google Scholar 

  27. Mindlin R.D. (1964). Microstructure in linear elasticity. Arch. Ration. Mech. Anal. 16: 51–78

    Article  MathSciNet  MATH  Google Scholar 

  28. Mühlhaus H.-B. (2004). Elasticity and Strength of Rock Material, Australia Lecture Notes. Queensland University Advanced Centre for Earthquake Studies, Australia

    Google Scholar 

  29. Neff P. (2004). A geometrically exact Cosserat shell model including size effects, avoiding degeneracy in the shell limit. Part I. Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Continuum Mech. Thermodyn. 16: 577–628

    Article  MathSciNet  MATH  Google Scholar 

  30. Nowacki V. (1986). Theory of Asymmetric Elasticity. Pergamon, New York

    MATH  Google Scholar 

  31. Oda M., Kazama H. and Konishi J. (1998). Effects of induced anisotropy on the development of shear bands in granular materials. Mech. Mater. 28: 103–111

    Article  Google Scholar 

  32. Sadd M.H. (2005). Elasticity: Theory Applications and Numerics. Elsevier Academic, MA

    Google Scholar 

  33. Tejchman, J.: Modelling of shear localisation and autogeneous dynamic effects in granular bodies. In: Publication series of the institute of soil and rock mechanics, vol. 140, University Karlsruhe (1997)

  34. Tejchman J., Herle I. and Wehr J. (1999). FE-Studies on the influence of initial void ratio, pressure level, and mean grain diameter on shear localization. Int. J. Numer. Anal. Meth. Geomech. 23: 2045–2074

    Article  MATH  Google Scholar 

  35. Tordesillas A., Peters J.F. and Gardiner B.S. (2004). Shear band evolution and accumulated microstructural development in Cosserat media. Int. J. Numer. Anal. Meth. Geomech. 28: 981–1010

    Article  MATH  Google Scholar 

  36. Vardoulakis I. and Sulem J. (1995). Bifurcation Analysis in Geomechanics. Blackie, Galsgow

    Google Scholar 

  37. Voyiadjis J.Z., Alsaleh M.I. and Alshibli K.A. (2005). Evolving internal length scales in plastic strain localization for granular materials. Int. J. Plast. 21: 2000–2024

    Article  MATH  Google Scholar 

  38. Walsh S.D.C. and Tordesillas A. (2004). A thermomechanical approach to the development of micropolar constitutive models of granular media. Acta Mech. 167: 145–169

    Article  MATH  Google Scholar 

  39. Willam K.J., Iordache M.M.: On the lack of symmetry in materials. In: Trends in Computational Structural Mechanics. CIMNE, Barcelona (2000)

  40. Arslan H., Sture S. and Willam K.J. (2007). Analytical and geometrical representation of localization in granular materials. Acta Mech. 194: 159–173

    Article  MATH  Google Scholar 

  41. Arslan, H., Sture, S.: Finite element simulation of localization in granular materials by micropolar continuum approach. Comput. Geotech., DOI: 10.1016/j.compgeo.2007.10.006 (2007)

  42. Arslan, H., Sture, S.: Evaluation of a physical length scale for granular materials. Comput. Mater. Sci., DOI: 10.1016/j.commatsci.2007.08.0 (2007)

  43. Arslan, H., Sture, S.: Finite element analysis of localization and micro–macro strucure relation in granular materials. Part II: Implementation and simulations. Acta Mech. 197 153–171 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haydar Arslan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arslan, H., Sture, S. Finite element analysis of localization and micro–macro structure relation in granular materials. Part I: Formulation. Acta Mech 197, 135–152 (2008). https://doi.org/10.1007/s00707-007-0512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0512-2

Keywords

Navigation