Skip to main content
Log in

Analytical and geometrical representation of localization in granular materials

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Attempts to understand the phenomenon of shear banding through mathematical analysis required exclusive use of the fundamental principles of mechanics. The feasibility of capturing localized deformation using analytical and numerical methods has been demonstrated by a number of investigators. However, most of the formulations have been developed to deal with classical continuum mechanics approaches. In order to describe correctly localization phenomena, a continuum model with microstructure or Cosserat continuum have been formulated and implemented. The main purpose of this paper is to describe and simulate the localization geometrically and analytically for both classical and Cosserat media. Similarities and differences of the two approaches will be summarized. The importance of description of kinematics and statics of soil media with microstructure has been investigated. The nonsymmetric Cosserat formulation has been implemented for analytical and geometrical localization analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aifantis E. (1987). The physics of plastic deformation. Int. J. Plast. 3: 211–248

    Article  MATH  Google Scholar 

  • Arslan H. and Baykal G. (2006). Analyzing the crushing of granular materials by sound analysis technique. ASTM J. Test. Evaluation 34: 464–470

    Google Scholar 

  • Cosserat E. (1909). Theorie des corps deformable. Hermann, Paris

    Google Scholar 

  • Eringen C. A. (1999). Microcontinuum field theories I: Foundations and solids. Springer, New York

    MATH  Google Scholar 

  • Hadamard J. (1903). Propagation des Ondes et les Equations d'Hydrodynamique. Chelsea, New York (reprinted 1949)

    Google Scholar 

  • Hill R. (1962). Acceleration waves in solids. J. Mech. Phys. Solids 10: 1–16

    Article  MATH  MathSciNet  Google Scholar 

  • Iordache, M. M.: Failure analysis of classical and micropolar elastoplastic materials. Ph.D. Thesis, University of Colorado-Boulder 1996.

  • Iordache M. M. and Willam K. (1998). Localized failure analysis in elastoplastic Cosserat continua. Comp. Meth. Appl. Mech. Engng. 151: 559–586

    Article  MATH  Google Scholar 

  • Jirásek, M.: Modeling of localized inelastic deformation. Short Course LID, Prague, 19–23 September 2005.

  • Lade P. V. (2002). Instability, shear banding and failure in granular materials. Department of Civil Engineering. Aalborg University, Denmark

    Google Scholar 

  • Liebe T. and Willam K. (2001). Localization properties of generalized Drucker Prager elastoplasticity. J. Engng. Mech. 127: 616–619

    Article  Google Scholar 

  • Mandel, J.: Conditions de stabilite et Postulat de Drucker. Proc. IUTAM symposium on rheology and soil mechanics (Kravtchenko, S., ed.), pp. 58–68. Berlin: Springer 1964.

  • Maxwell J. C. (1873). Electricity and magnetism. Clarendon Press, Oxford, UK

    Google Scholar 

  • Mohr O. (1906). Abhandlungen aus dem Gebiet der technischen Mechanik. Wilhelm Ernst & Sohn, Berlin

    Google Scholar 

  • Molenkamp F. (1985). Comparison of frictional material models with respect to shear band initiation. Geotechnique 35: 127–143

    Google Scholar 

  • Muhlhaus H. B. and Vardoulakis I. (1987). The thickness of shear bands in granular materials. Geotechnique 37: 271–283

    Article  Google Scholar 

  • Muhlhaus H. B. (1989). Application of Cosserat theory in numerical solutions of limit load problems. Ing. Arch. 59: 124–37

    Article  Google Scholar 

  • Oda M., Konishi J. and Nemat-Nasser S. (1982). Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling. Mech. Mater. 1: 269–283

    Article  Google Scholar 

  • Oda M. and Kazama H. (1998). Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48: 465–481

    Google Scholar 

  • Ottosen N. and Runesson K. (1991). Acceleration waves in elastoplasticity. Int. J. Solids Struct. 28: 135–159

    Article  MATH  MathSciNet  Google Scholar 

  • Ottosen N. and Runesson K. (1991). Properties of discontinuous bifurcation solutions in elasto-plasticity. Int. J. Solids Struct. 27: 401–421

    Article  MATH  MathSciNet  Google Scholar 

  • Peric, D.: Localized deformation and failure analysis of pressure sensitive granular materials. PhD dissertation, University of Colorado-Boulder 1990.

  • Rice, J.: The localization of deformation. In: Theoretical and applied mechanics (Koiter, W., ed.), North Publishing Company 1976.

  • Rizzi E., Carol I. and Willam K. (1995). Localization Analysis of Elastic Degradation with application to scalar damage. J. Engng. Mech. 121: 541–554

    Article  Google Scholar 

  • Rice J. R. and Rudnicki J. W. (1980). A note on some features of the theory of localization of deformation. Int. J. Solids Struct. 16: 597–605

    Article  MATH  MathSciNet  Google Scholar 

  • Thomas T. Y. (1961). Plastic flow and fracture in solids. New York, Academic Press

    MATH  Google Scholar 

  • Tordesillas A. and Walsh S. D. C. (2002). Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Tech. 124: 106–111

    Article  Google Scholar 

  • Vardoulakis I. (1979). Bifurcation analysis of the triaxial test on sand samples. Acta Mech. 32: 35–54

    Article  MATH  Google Scholar 

  • Vardoulakis I. (1980). Shear band inclination and shear modulus of sand in biaxial tests. Int. J. Numer. Anal. Meth. Geomech. 4: 103–119

    Article  MATH  Google Scholar 

  • Vardoulakis I. (1989). Shear-band and liquefaction in granular materials on the basis of Cosserat continuum theory. Ingenieur-Archiv 59: 106–113

    Article  Google Scholar 

  • Vardoulakis I. and Aifantis E. C. (1989). Gradient dependent dilatancy and its implications in shear banding and liquefaction. Ingenieur-Archiv 59: 197–208

    Article  Google Scholar 

  • Willam, K.: Localization in micropolar continua, continuum models for materials with microstructure, pp. 297–339. Wiley 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Arslan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arslan, H., Sture, S. & Willam, K.J. Analytical and geometrical representation of localization in granular materials. Acta Mechanica 194, 159–173 (2007). https://doi.org/10.1007/s00707-007-0464-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0464-6

Keywords

Navigation