Skip to main content
Log in

Rapid amperometric determination of H2O2 by a Pt nanoparticle/Vulcan XC72 composite-coated carbon paste electrode in disinfection and contact lens solutions

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The present work describes the preparation of a simple, sensitive, and reliable H2O2 sensor made from carbon paste surface modified with a composite of platinum nanoparticles (< 5 nm) on graphitized carbon (Pt-C, 10% Pt on Vulcan XC72) by simply drop-coating. The unmodified carbon paste electrode (CPE) and the modified one (Pt-C/CPE) were characterized by scanning electron microscopy in combination with energy-dispersive X-ray spectrometry and by cyclic voltammetry. The Pt-C/CPE showed remarkable electrocatalytic properties toward the electrochemical redox reaction of H2O2 compared to CPE in phosphate (0.1 mol dm−3; pH 7.50) and acetate (0.1 mol dm−3; pH 4.50) buffer supporting electrolytes. Amperometry of H2O2 in the concentration range from 0.15 to 1.45 µg cm−3 with the Pt-C/CPE showed acceptable linearity, while the obtained values of LOQs were 0.06 µg cm−3 (pH 7.50, working potential 0.20 V, stirred solution) and 0.10 µg cm−3 (pH 4.50, working potential 0.50 V). The proposed analytical methods were applied to the determination of the H2O2 content in commercially available personal care products: disinfection (pH 7.50) and contact lens cleaning (pH 4.50) solutions. In both cases, obtained amperometric results are in good agreement with those measured by the traditional spectrophotometric method and with H2O2 concentration declared by producers. The Pt-C/CPE was also tested for monitoring of the H2O2 residual concentration in contact lens solution during its neutralization/decomposition process by solid Pt catalyst. At 6 h of neutralization treatment, 24.68 μg cm−3 of the H2O2 was determined which is below allowed H2O2 concentration concerning the limit of eye irritation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ping J, Wu J, Fan K, Ying Y (2011) Food Chem 126:2005

    Article  CAS  PubMed  Google Scholar 

  2. Hsu C-L, Chang K-S, Kuo J-C (2008) Food Control 19:223

    Article  CAS  Google Scholar 

  3. Chen W, Cai S, Ren Q-Q, Wen W, Zhao Y-D (2012) Analyst 137:49

    Article  CAS  PubMed  Google Scholar 

  4. Azizi SN, Ghasemi S, Salek Gilani N (2016) Monatsh Chem 147:1467

    Article  CAS  Google Scholar 

  5. Karuppiah C, Palanisamy S, Chen S-M (2014) Electrocatalysis 5:177

    Article  CAS  Google Scholar 

  6. Pupo Nogueira RF, Oliveira MC, Paterlini WC (2005) Talanta 66:86

    Article  CAS  Google Scholar 

  7. Linley E, Denyer SP, McDonnell G, Simons C, Maillard J-Y (2012) J Antimicrob Chemother 67:1589

    Article  CAS  PubMed  Google Scholar 

  8. Hughes R, Kilvington S (2001) Antimicrob Agents Chemother 45:2038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harms D, Than R, Pinkernell U, Schmidt M, Krebs B, Karst U (1998) Analyst 123:2323

    Article  CAS  Google Scholar 

  10. Chen A, Chatterjee S (2013) Chem Soc Rev 42:5425

    Article  CAS  PubMed  Google Scholar 

  11. Zhang W, Guo C, Chang Y, Wu F, Ding S (2014) Monatsh Chem 145:107

    Article  CAS  Google Scholar 

  12. Švancara I, Vytřas K, Kalcher K, Walcarius A, Wang J (2009) Electroanalysis 21:7

    Article  CAS  Google Scholar 

  13. Kalcher K, Svancara I, Buzuk M, Vytras K, Walcarius A (2009) Monatsh Chem 140:861

    Article  CAS  Google Scholar 

  14. Hočevar SB, Švancara I, Vytřas K, Ogorevc B (2005) Electrochim Acta 51:706

    Article  CAS  Google Scholar 

  15. Chen S, Yuan R, Chai Y, Hu F (2013) Microchim Acta 180:15

    Article  CAS  Google Scholar 

  16. Wang J, Naser N, Angnes L, Wu H, Chen L (1992) Anal Chem 64:1285

    Article  CAS  Google Scholar 

  17. Kotzian P, Brázdilová P, Kalcher K, Handlíř K, Vytřas K (2007) Sens Actuators B 124:297

    Article  CAS  Google Scholar 

  18. Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y (2005) Diam Relat Mater 14:2133

    Article  CAS  Google Scholar 

  19. Tay B-T, Ang K-P, Gunasingham H (1988) Analyst 113:617

    Article  CAS  Google Scholar 

  20. Kawde A-N, Aziz M, Baig N, Temerk Y (2015) J Electroanal Chem 740:68

    Article  CAS  Google Scholar 

  21. Chen Y, Li Q, Jiang H, Wang X (2016) J Electroanal Chem 781:233

    Article  CAS  Google Scholar 

  22. Li J, Yu Q, Peng T (2005) Anal Sci 21:377

    Article  CAS  PubMed  Google Scholar 

  23. Anojčić J, Guzsvány V, Vajdle O, Madarász D, Rónavári A, Kónya Z, Kalcher K (2016) Sens Actuators B 233:83

    Article  CAS  Google Scholar 

  24. Li X, Liu X, Wang W, Li L, Lu X (2014) Biosens Bioelectron 59:221

    Article  CAS  PubMed  Google Scholar 

  25. Fang Y, Zhang D, Qin X, Miao Z, Takahashi S, Anzai J-I, Chen Q (2012) Electrochim Acta 70:266

    Article  CAS  Google Scholar 

  26. Hrapovic S, Liu Y, Male KB, Luong JHT (2004) Anal Chem 76:1083

    Article  CAS  PubMed  Google Scholar 

  27. Bo X, Ndamanisha JC, Bai J, Guo L (2010) Talanta 82:85

    Article  CAS  PubMed  Google Scholar 

  28. Bo X, Bai J, Qi B, Guo L (2011) Biosens Bioelectron 28:77

    Article  CAS  PubMed  Google Scholar 

  29. Xu F, Sun Y, Zhang Y, Shi Y, Wen Z, Li Z (2011) Electrochem Commun 13:1131

    Article  CAS  Google Scholar 

  30. Zhang F, Wang Z, Zhang Y, Zheng Z, Wang C, Du Y, Ye W (2012) Int J Electrochem Sci 7:1968

    CAS  Google Scholar 

  31. Karthik R, Karikalan N, Chen S-M (2017) Carbohydr Polym 164:102

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Huang J, Zhang C, Wei J, Zhou X (1998) Electroanalysis 10:776

    Article  CAS  Google Scholar 

  33. Rivas Romero MP, Luque Centeno JM, Estévez Brito R, Rodríguez-Amaro R, Rodríguez Mellado JM (2017) J Electroanal Chem 789:24

    Article  CAS  Google Scholar 

  34. Cui X, Wu S, Li Y, Wan G (2015) Microchim Acta 182:265

    Article  CAS  Google Scholar 

  35. Gowthaman NSK, Abraham John S, Tominaga M (2017) J Electroanal Chem 798:24

    Article  CAS  Google Scholar 

  36. Chen K-J, Pillai KC, Rick J, Pan C-J, Wang S-H, Liu C-C, Hwang B-J (2012) Biosens Bioelectron 33:120

    Article  CAS  PubMed  Google Scholar 

  37. Niu X, Chen C, Zhao H, Chai Y, Lan M (2012) Biosens Bioelectron 36:262

    Article  CAS  PubMed  Google Scholar 

  38. Xu C, Liu Y, Su F, Liu A, Qiu H (2011) Biosens Bioelectron 27:160

    Article  CAS  PubMed  Google Scholar 

  39. Liu H, Wen M, Zhang F, Liu D, Tian Y (2010) Anal Methods 2:143

    Article  CAS  Google Scholar 

  40. Gattia DM, Antisari MV, Giorgi L, Marazzi R, Piscopiello E, Montone A, Bellitto S, Licoccia S, Traversa E (2009) J Power Sources 194:243

    Article  CAS  Google Scholar 

  41. Aricò AS, Srinivasan S, Antonucci V (2001) Fuel Cells 1:133

    Article  Google Scholar 

  42. Antolini E (2009) Appl Catal B Environ 88:1

    Article  CAS  Google Scholar 

  43. Eisenberg G (1943) Ind Eng Chem 15:327

    CAS  Google Scholar 

  44. Erlenkötter A, Kottbus M, Chemnitius G-C (2000) J Electroanal Chem 481:82

    Article  Google Scholar 

  45. Guzsvány V, Anojčić J, Radulović E, Vajdle O, Stanković I, Madarász D, Kónya Z, Kalcher K (2017) Microchim Acta 184:1987

    Article  CAS  Google Scholar 

  46. Corrigan DS, Weaver MJ (1988) Langmuir 4:599

    Article  CAS  Google Scholar 

  47. Vetter TA, Colombo DP (2003) J Chem Educ 80:788

    Article  CAS  Google Scholar 

  48. Weisbarth RE, Henderson B (2005) Hydrogel lens care regimens and patient education. In: Bennett ES, Weissman BA (eds) Clinical contact lens practice. Lippincott Williams and Wilkins, Philadelphia, p 392

    Google Scholar 

  49. Švancara I, Metelka R, Vytřas K (2005) Piston-driven carbon paste electrode holders for electrochemical measurements. In: Vytřas K, Kalcher K (eds) Sensing in electroanalysis, vol 1. University of Pardubice, Pardubice, p 7

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Ministry of Science and Technological Development of the Republic of Serbia (Project Nos. 172059 and 172012), and CEEPUSIII (CZ-0212-09-1516) network. Miloš Bokorov, M.Sc., is gratefully acknowledged for the SEM/EDS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valéria Guzsvány.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anojčić, J., Guzsvány, V., Vajdle, O. et al. Rapid amperometric determination of H2O2 by a Pt nanoparticle/Vulcan XC72 composite-coated carbon paste electrode in disinfection and contact lens solutions. Monatsh Chem 149, 1727–1738 (2018). https://doi.org/10.1007/s00706-018-2253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2253-4

Keywords

Navigation