Skip to main content
Log in

Voltammetric behaviour and amperometric sensing of hydrogen peroxide on a carbon paste electrode modified with ternary silver-copper sulfides containing intrinsic silver

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Abstract

The electrochemical behavior of three ternary mixed silver-copper sulfides toward hydrogen peroxide, at various pH values, is presented. Electrochemical characterization, performed using modified carbon paste electrode, revealed that the material that consists of Ag1.2CuS2, AgCuS, and intrinsic metallic silver showed favorable electrochemical signal in the presence of H2O2, when measurements were performed at pH 5. According to the results of the additional electrochemical investigation, a novel mechanism involved in the genesis of electroanalytical signal is proposed. Obtained electronalytical signal, at operating potential of the 0 V (vs. Ag/AgCl) toward H2O2, is proposed to proceeds according to the chemical-electrochemical (CE) mechanism without direct electrochemical reaction of H2O2 at the electrode. The amperometric response is linear in the 1–1000 μM H2O2 concentration range with a detection limit of the 0.055 μM. Sensitivity is calculated to be 16.82 μA cm−2 mM−1. As optimum pH value, pH 5 was selected. In the presence of the uric acid, asorbic acid, oleic acid, citric acid, and glucose no interference on the amperometric signal was observed. Being a robust and a simple electrode, with remarkable stability, repeatability, and reproducibility, the optimized electrode was successfully tested for determination of the hydrogen peroxide in a commercially available contact lens solution.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Majeed A, Farooq I, Grobler SR, Moola MH (2014) Acta Odontol Scand 73:387

    PubMed  Google Scholar 

  2. Gimeno P, Bousquet C, Lassu N, Lassu A, Civade C, Brenier C, Lempereur L (2015) J Pharmaceut Biomed 107:386

    CAS  Google Scholar 

  3. Sinduja B, John SA (2017) Sens Actuators B Chem 247:648

    CAS  Google Scholar 

  4. Wang T, Xiang Y, Liu X, Chen W, Hu Y (2017) Talanta 162:143

    CAS  PubMed  Google Scholar 

  5. Sagrillo MR, Garcia LFM, De Souza Filho OC, Duarte MMMF, Ribeiro EE, Cadoná FC, Da Cruz IBM (2015) Food Chem 173:741

    CAS  PubMed  Google Scholar 

  6. Wu Y, Gao Y, Du J (2019) Talanta 197:599

    CAS  PubMed  Google Scholar 

  7. Yue G, Li S, Liu W, Ding F, Zou P, Wang X, Zhao Q, Rao H (2019) Sens Actuators B Chem 287:408

    CAS  Google Scholar 

  8. Wang Y, Yang M, Ren Y, Fan J (2019) Microchim Acta 186:277

    Google Scholar 

  9. Hamtak M, Fotouhi L, Hosseini M, Reza Ganjali M (2018) Anal Lett 52:633

    Google Scholar 

  10. Nan Y, Zhao W, Li N, Liang Z, Xu X (2019) Sens Actuators B Chem 281:296

    CAS  Google Scholar 

  11. Garreffi BP, Guo M, Tokranova N, Cady NC, Castracane J, Levitsky IA (2018) Sens Actuators B Chem 276:466

    CAS  Google Scholar 

  12. Ivanova AS, Merkuleva AD, Andreev SV, Sakharov KA (2019) Food Chem 283:431

    CAS  PubMed  Google Scholar 

  13. Zou J, Cai H, Wang D, Xiao J, Zhou Z, Yuan B (2019) Chemosphere 224:646

    CAS  PubMed  Google Scholar 

  14. Sui N, Li S, Wang Y, Zhang Q, Liu S, Bai Q, Xiao H, Liu M, Wang L, Yu WW (2019) Microchim Acta 186:186

    Google Scholar 

  15. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Analyst 137:49

    CAS  PubMed  Google Scholar 

  16. Li J, Hu H, Li H, Yao C (2017) J Mater Sci 52:10455

    CAS  Google Scholar 

  17. Olenin AY (2017) J Anal Chem 72:243

    CAS  Google Scholar 

  18. Zhu H, Li L, Zhou W, Shao Z, Chen X (2016) J Mater Chem B 4:7333

    CAS  PubMed  Google Scholar 

  19. Chen X, Wu G, Cai Z, Oyama M, Chen X (2013) Microchim Acta 181:689

    Google Scholar 

  20. George JM, Antony A, Mathew B (2018) Microchim Acta 185:358

    Google Scholar 

  21. Miao XM, Yuan R, Chai YQ, Shi YT, Yuan YY (2008) J Electroanal Chem 612:157

    CAS  Google Scholar 

  22. He G, Jiang J, Wu D, You Y, Yang X, Wu F, Hu Y (2016) Int J Electrochem Sci 11:8486

    CAS  Google Scholar 

  23. Ping J, Ru S, Fan K, Wu J, Ying Y (2010) Microchim Acta 171:117

    CAS  Google Scholar 

  24. Weng S, Zheng Y, Zhao C, Zhou J, Lin L, Zheng Z, Lin X (2013) Microchim Acta 180:371

    CAS  Google Scholar 

  25. Song H, Ni Y, Kokot S (2014) Colloids Surf A Physicochem Eng Aspects 465:153

    Google Scholar 

  26. Liu J, Yang C, Shang Y, Zhang P, Liu J, Zheng J (2018) Microchim Acta 185:172

    Google Scholar 

  27. Xu F, Deng M, Li G, Chen S, Wang L (2013) Electrochim Acta 88:59

    CAS  Google Scholar 

  28. Zhao C, Wu X, Li P, Zhao C, Qian X (2017) Microchim Acta 184:2341

    CAS  Google Scholar 

  29. Yang J, Ye H, Zhao F, Zeng B (2016) ACS Appl Mater Interfaces 8:20407

    CAS  PubMed  Google Scholar 

  30. Luque GL, Rodrìguez MC, Rivas GA (2005) Talanta 66:467

    CAS  PubMed  Google Scholar 

  31. Yu J, Ma D, Mei L, Gao Q, Yin W, Zhang X, Yan L, Gu Z, Ma X, Zhao Y (2017) J Mater Chem B 6:487

    Google Scholar 

  32. Chakraborty B, Show B, Jana S, Mitra BC, Maji SK, Adhikary B, Mukherjee N, Mondal A (2013) Electrochim Acta 94:7

    CAS  Google Scholar 

  33. Kubendhiran S, Thirumalraj B, Chen SM, Karuppiah C (2017) J Colloid Interf Sci 509:153

    Google Scholar 

  34. Wu W, Wu L, Wu H, Wang S, Ding Y, Feng C (2017) Sens Actuators B Chem 250:224

    CAS  Google Scholar 

  35. Bai J, Jiang X (2013) Anal Chem 85:8095

    CAS  PubMed  Google Scholar 

  36. Lu W, Sun Y, Dai H, Ni P, Jiang S, Wang Y, Li Z, Li Z (2016) RSC Adv 6:90732

    CAS  Google Scholar 

  37. Xu M, Cui L, Han R, Ai S (2012) J Solid State Electrochem 16:2547

    CAS  Google Scholar 

  38. Bo X, Bai J, Wang L, Guo L (2010) Talanta 81:339

    CAS  PubMed  Google Scholar 

  39. Maji SK, Dutta AK, Bhadu GR, Paul P, Mondal A, Adhikary B (2013) J Mater Chem B 1:4127

    CAS  PubMed  Google Scholar 

  40. Yao Z, Yang X, Wu F, Wu W, Wu F (2016) Microchim Acta 183:2799

    CAS  Google Scholar 

  41. Zhang Y, Wang Z, Ji Y, Liu S, Zhang T (2015) RSC Adv 5:39037

    CAS  Google Scholar 

  42. Lorestani F, Shahnavaz Z, Mn P, Alias Y, Manan NSA (2015) Sens Actuators B Chem 208:389

    CAS  Google Scholar 

  43. Goud KY, Kumar VS, Hayat A, Catanante G, Gobi KV, Marty JL (2019) Microchim Acta 186:810

    CAS  Google Scholar 

  44. Wei Z, Hai Z, Akbari MK, Zhao Z, Sun Y, Hyde L, Verpoort F, Hu J, Zhuiykov S (2019) Electrochim Acta 297:417

    CAS  Google Scholar 

  45. Zhao F, Zhou M, Wang L, Huang Z, Chu Y (2019) J Electroanal Chem 833:205

    CAS  Google Scholar 

  46. Li J, Jiang J, Xu Z, Liu M, Tang S, Yang C, Qian D (2018) Sens Actuators B Chem 260:529

    CAS  Google Scholar 

  47. Ikhsan NI, Rameshkumar P, Yusoff N, Huang NM (2019) J Nanosci Nanotechno 19:7054

    CAS  Google Scholar 

  48. Mirzaei M, Behboudnia M, Kheiri F, Chianeh VA, Naeim H, Jannatdoust E, Sirousazar M (2019) J Electrochem Soc 166:B1232

    CAS  Google Scholar 

  49. Ma J, Bai W, Zheng J (2019) Microchim Acta 186:482

    Google Scholar 

  50. Zhao L, Wang Y, Zhao X, Deng Y, Li Q, Xia Y (2018) Nanomaterials 8:507

    PubMed Central  Google Scholar 

  51. Yang K, Yan Z, Ma L, Du Y, Peng B, Feng J (2019) Nanomaterials 9:523

    CAS  PubMed Central  Google Scholar 

  52. Huang Z, Zhang A, Zhang Q, Pan S, Cui D (2019) J Electrochem Soc 166:B1138

    CAS  Google Scholar 

  53. Pei LZ, Yang LJ, Wang JF, Fan CG, Hu JL (2010) e-J Surf Sci Nanotech 8:384

    CAS  Google Scholar 

  54. Vladislavić N, Škugor Rončević I, Buljac M, Brinić S, Krivić D, Buzuk M (2018) Sensors 18:3753

    Google Scholar 

  55. Brinić S, Buzuk M, Bralić M, Buljac M, Jozić D (2012) Int J Electrochem Sci 7:5217

    Google Scholar 

  56. Ghosale A, Shrivas K, Deb MK, Ganesan V, Karbhal I, Bajpai PK, Shankar R (2018) Anal Methods 10:3248

    CAS  Google Scholar 

  57. Shi L, Layani M, Cai X, Zhao H, Magdassi S, Lan M (2018) Sens Actuators B Chem 256:938

    CAS  Google Scholar 

  58. Yang D, Ni N, Cao L, Song X, Alhamoud Y, Yu G, Zhao J, Zhou H (2019) Micromachines 10:268

    PubMed Central  Google Scholar 

  59. Xu D, Hou B, Qian L, Zhang X, Liu G (2019) Molecules 24:3411

    CAS  PubMed Central  Google Scholar 

  60. Cai X, Tanner EEL, Lin C, Ngamchuea K, Foord JS, Compton RG (2018) Phys Chem Chem Phys 20:1608

    CAS  PubMed  Google Scholar 

  61. Doua J, Zhua G, Hua B, Yang J, Ge Y, Li X, Liua J (2019) Electrochim Acta 306:466

    Google Scholar 

  62. Yang Y, Zhang H, Wang J, Yang S, Liu T, Tao K, Chang H (2019) J Mater Chem A 7:11497

    CAS  Google Scholar 

  63. Randjelović MS, Momčilović MZ, Enke D, Mirčeski V (2019) J Solid State Electrochem 23:1257

    Google Scholar 

  64. Nishimoto M, Abe S, Yonezawa T (2018) New J Chem 42:14493

    CAS  Google Scholar 

  65. Miller JN, Miller JC (2010) Statistics and chemometrics for analytical chemistry, 6th edn. Pearson Education Canada, Burlington, Canada

  66. Chen L, Wang Y, Ban H, Yu S, Tao D, Hu Z (2018) Int J Electrochem Sci 13:10961

    CAS  Google Scholar 

  67. Guzsvány V, Vajdle O, Gurdeljević M, Kónya Z (2018) Top Catal 61:1350

    Google Scholar 

  68. Baghayeri M, Veisi H, Farhadi S, Beitollahi H, Maleki B (2018) J Iran Chem Soc 15:1015

    CAS  Google Scholar 

  69. Sönmez Çelebi M, Öztürk K, Dumangöz M, Kuralay F (2018) Turk J Chem 42:1755

    Google Scholar 

  70. Gholami M, Koivisto B (2019) Appl Surf Sci 467–468:112

    Google Scholar 

  71. Dodevska T, Vasileva I, Denev P, Karashanova D, Georgieva B, Kovacheva D, Yantcheva N, Slavov A (2019) Mater Chem Phys 231:335

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijo Buzuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buljac, M., Krivić, D., Škugor Rončević, I. et al. Voltammetric behaviour and amperometric sensing of hydrogen peroxide on a carbon paste electrode modified with ternary silver-copper sulfides containing intrinsic silver. Monatsh Chem 151, 511–524 (2020). https://doi.org/10.1007/s00706-020-02588-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02588-4

Keywords

Navigation