Skip to main content
Log in

Structure and magnetic properties of nano-sized perovskite oxide La0.5Sr0.5Ti0.5Fe0.4Cr0.1O3 synthesized by the citrate precursor method

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A new nano-sized perovskite oxide La0.5Sr0.5Ti0.5Fe0.4Cr0.1O3 has been prepared according to the citrate precursor method at two different temperatures. Rietveld profile analysis shows that the phase crystallizes with the orthorhombic unit cell in the space group Pbnm. The size reduction due to the decrease in calcination temperature leads to an increase in lattice parameters and an expansion of the cell volume. The average grain size obtained from the TEM measurement is found to be larger than the observed crystal size obtained from XRD. The magnetic studies suggest that the anti-ferromagnetic interactions are dominant because of Fe3+–O–Fe3+ and Cr3+–O–Cr3+ exchange interactions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Voorhoeve RJH, Johnson DW Jr, Remeika JP, Gallagher PK (1977) Science 195:827

    Article  CAS  Google Scholar 

  2. Tejuca LG, Fierro JLG, Tascon JMD (1989) Adv Catal 36:237

    Article  CAS  Google Scholar 

  3. Seiyama T (1992) Catal Rev Sci Eng 34:281

    Article  CAS  Google Scholar 

  4. McCarty JG, Wise H (1990) Catal Today 8:231

    Article  CAS  Google Scholar 

  5. Tejuca LG, Fierro JLG (1993) Properties and applications of perovskite-type oxides. Marcel Dekker, New York

    Google Scholar 

  6. Plonczak P, Gazda M, Kusz B, Jasinski P (2008) J Power Sour 181:1

    Article  CAS  Google Scholar 

  7. Arendt E, Maione A, Klisinska A, Sanz O, Montes M, Suarez S, Blanco J, Ruiz P (2008) Appl Catal A 339:1

    Article  CAS  Google Scholar 

  8. Zhang JC, Wen ZY, Huang SH, Wu JG, Han JD, Xu XX (2008) Ceram Int 34:1273

    Article  CAS  Google Scholar 

  9. Li KY, Wu FQ, Wang DJ, Xie TF, Li TJ (2001) Mater Chem Phys 71:34

    Article  CAS  Google Scholar 

  10. Lunkenheimer P, Rudolf T, Hemberger J, Pimenov A, Tachos S, Lichtenberg F, Loidl A (2003) Phys Rev B 68:245

    Article  Google Scholar 

  11. Mochizuki M, Imada M (2003) Phys Rev Lett 91:167

    Article  Google Scholar 

  12. Tokura Y, Taguchi T, Okada Y, Fujishima Y, Arima T, Kumagai K, Iye Y (1993) Phys Rev Lett 70:2126

    Article  CAS  Google Scholar 

  13. Okaka Y, Arima T, Tokura Y, Murayama C, Mori N (1993) Phys Rev B 48:9677

    Article  Google Scholar 

  14. Robey SW, Hudson LT, Eylem C, Eichorn B (1993) Phys Rev B 48:562

    Article  CAS  Google Scholar 

  15. Sunstrom JE, Kauzlarich SM (1993) Chem Mater 5:1539

    Article  CAS  Google Scholar 

  16. Fu QX, Tietz F, Stöver D (2006) J Electrochem Soc 153:D74

    Article  CAS  Google Scholar 

  17. Marina OA, Canfield NI, Stevenson JW (2002) Sol State Ionics 149:21

    Article  CAS  Google Scholar 

  18. Martínez-Coronado A, Aguadero A, Pérez-Coll D, Troncoso L, Alonso JA, Fernández-Díaz MT (2012) Int J Hydrog Energy 37:18310

    Article  Google Scholar 

  19. Martínez-Coronado R, Alonso JA, Aguadero A, Pérez-Coll D, Fernández-Díaz MT (2013) J Appl Phys 113:123708

    Article  Google Scholar 

  20. Wang Y, Herron N (1991) J Phys Chem 95:525

    Article  CAS  Google Scholar 

  21. Guldi DM, Zerbetto F, Georgakilas V, Prato M (2005) Acc Chem Res 38:8

    Google Scholar 

  22. Gleiter H, Weissmuller J, Wollersheim O, Wurschum R (2001) Acta Mater 49:737

    Article  CAS  Google Scholar 

  23. Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). National Laboratory Report LAUR, Los Alamos, pp 86–748

    Google Scholar 

  24. Zhou SM, Shi L, Zhao JY, He LF, Yang HP, Zhang SM (2007) Phys Rev B 76:172407

    Article  Google Scholar 

  25. Harada A, Taniyama T, Takeuchi Y, Sato T, Kyomen T, Itoh M (2007) Phys Rev B 75:184426

    Article  Google Scholar 

  26. Shannon RD (1976) Acta Crystallogr Sect A 32:751

    Article  Google Scholar 

  27. Klung HP, Alexander LE (1954) X-ray diffraction procedures for polycrystalline and amorphous materials. John Wiley & Sons Inc, Canada

    Google Scholar 

  28. Nica V, Sauer HM, Embs J, Hempelmann R (2008) J Phys 20:204115

    CAS  Google Scholar 

  29. Laberty C, Alphonse P, Demai JJ, Sarada C, Rousset A (1997) Mater Res Bull 32:249

    Article  CAS  Google Scholar 

  30. Taguchi H (1997) J Sol State Chem 131:108

    Article  CAS  Google Scholar 

  31. Hu W, Chen Y, Yuan H, Zhand G, Li G, Pang G, Feng S (2010) J Sol State Chem 183:1582

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the University Grants Commission, New Delhi, for financial support under the UGC Major Research Project (F.No. 41-284/2012SR; dated 13 July 2012). The authors are also thankful to Dr. Harpreet Singh, Central Research Facility Section, Indian Institute of Technology Ropar, for recording XRD. Thanks are also due to Prof. Ramesh Chandra, Institute Instrumentation Centre, Indian Institute of Technology, Roorkee, for recording EDAX data, and Director, Sophisticated Analytical Instrumentation Facility (SAIF), Panjab University Chandigarh, for recording the TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D., Singh, S. & Mahajan, A. Structure and magnetic properties of nano-sized perovskite oxide La0.5Sr0.5Ti0.5Fe0.4Cr0.1O3 synthesized by the citrate precursor method. Monatsh Chem 145, 1235–1241 (2014). https://doi.org/10.1007/s00706-014-1189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1189-6

Keywords

Navigation