Skip to main content
Log in

An experimental NMR and computational study of 4-quinolones and related compounds

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

We report the synthesis and structural study of eight compounds, either quinolin-4(1H)-ones or quinolines. Tautomerism as well as (E) → (Z) and rotational isomerism were studied both experimentally (1H and 13C NMR) and theoretically [B3LYP/6-311++G(d,p)].

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Scheme 4
Scheme 5
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huse H, Whiteley M (2011) Chem Rev 111:152

    Article  CAS  Google Scholar 

  2. Sondheimer F, Meisels A (1958) J Org Chem 23:762

    Article  CAS  Google Scholar 

  3. Goodwin S, Smith AF, Velasquez AA, Horning EC (1959) J Am Chem Soc 81:6209

    Article  CAS  Google Scholar 

  4. Coppola GM (1982) J Heterocycl Chem 19:727

    Article  CAS  Google Scholar 

  5. Michael JP (1997) Nat Prod Rep 14:605

    Article  CAS  Google Scholar 

  6. Koyama J, Toyokuni I, Tagahara K (1999) Chem Pharm Bull 47:1038

    CAS  Google Scholar 

  7. Funayama S, Tanaka R, Kumekawa Y, Noshita T, Mori T, Kashiwagura T, Murata K (2001) Biol Pharm Bull 24:100

    Article  CAS  Google Scholar 

  8. Michael JP (2004) Nat Prod Rep 21:650

    Article  CAS  Google Scholar 

  9. Tsukamura M (1985) Am Rev Resp Dis 131:348

    CAS  Google Scholar 

  10. O’Brien R (2003) Am J Respir Crit Care Med 168:1266

    Article  Google Scholar 

  11. Janin YL (2007) Bioorg Med Chem 15:2479

    Article  CAS  Google Scholar 

  12. Huang L-J, Hsieh M-C, Teng C-M, Lee K-H, Kuo S-C (1998) Bioorg Med Chem 6:1657

    Article  CAS  Google Scholar 

  13. Traxler P, Green J, Mett H, Séquin U, Furet P (1999) J Med Chem 42:1018

    Article  CAS  Google Scholar 

  14. Hadjeri M, Barbier M, Ronot X, Mariotte A-M, Boumendjel A, Boutonnat J (2003) J Med Chem 46:2125

    Article  CAS  Google Scholar 

  15. Xiao Z-P, Li H-Q, Shi L, Lv P-C, Song Z-C, Zhu H-L (2008) ChemMedChem 3:1077

    Article  CAS  Google Scholar 

  16. Jin GH, Ha SK, Park HM, Kang B, Kim SY, Kim H-D, Ryu J-H, Jeon R (2008) Bioorg Med Chem Lett 18:4092

    Article  CAS  Google Scholar 

  17. Coelho A, El-Maatougui A, Raviña E, Cavaleiro JAS, Silva AMS (2006) Synlett 3324

  18. Seixas RSGR, Silva AMS, Pinto DCGA, Cavaleiro JAS (2008) Synlett 3193

  19. Seixas RSGR, Silva AMS, Cavaleiro JAS (2010) Synlett 2257

  20. Maryanoff BE, Reitz AB, Mutter MS, Inners RR, Almond HR Jr, Whittle RR, Olofson RA (1986) J Am Chem Soc 108:7664

    Article  CAS  Google Scholar 

  21. Maryanoff BE, Reitz AB (1989) Chem Rev 89:863

    Article  CAS  Google Scholar 

  22. Kolodiazhnyi OI (1999) In: Phosphorous Ylides—chemistry and application in organic synthesis. Wiley-VCH, Weinheim, p 359

  23. Sandulache A, Silva AMS, Pinto DCGA, Almeida LMPM, Cavaleiro JAS (2003) New J Chem 27:1592

    Article  CAS  Google Scholar 

  24. Elguero J, Marzin C, Katritzky AR, Linda P (1976) The tautomerism of heterocycles. Academic, New York, p 94

    Google Scholar 

  25. Stanovnik B, Tisler M, Katritzky AR, Denisko OV (2006) Adv Heterocycl Chem 91:18

    Article  Google Scholar 

  26. Wentrup C, Rao VVR, Frank W, Fulloou BE, Moloney DWH, Mosandl T (1999) J Org Chem 64:3608

    Article  CAS  Google Scholar 

  27. Mphahlele MJ, Fernandes MA, El-Nahas AM, Ottosson H, Ndlovu SM, Sithole HM, Dladla BS, De Waal D (2002) J Chem Soc Perkin Trans 2:2159

    Google Scholar 

  28. Mphahlele MJ, El-Nahas AM (2004) J Mol Struct 688:129

    Article  CAS  Google Scholar 

  29. Neuhaus DM, Williamson MP (2000) The nuclear Overhauser Effect in structural and conformational analysis. Wiley, New York (chapter 11)

  30. Ramanathan S, Lemal DM (2007) J Org Chem 72:1566

    Article  CAS  Google Scholar 

  31. Silva AMS, Sousa RMS, Jimeno ML, Blanco F, Alkorta U, Elguero J (2008) Magn Reson Chem 46:859

    Article  CAS  Google Scholar 

  32. Blanco F, Alkorta I, Elguero J (2007) Magn Reson Chem 45:797

    Article  CAS  Google Scholar 

  33. Claramunt RM, López C, García MA, Otero MD, Torres MR, Pinilla E, Alarcón SH, Alkorta I, Elguero J (2001) New J Chem 25:1061

    Article  CAS  Google Scholar 

  34. Prakash O, Kumar A, Sadana A, Prakash R, Singh SP, Claramunt RM, Sanz D, Alkorta I, Elguero J (2005) Tetrahdron 61:6642

    Article  CAS  Google Scholar 

  35. Mosti L, Menozzi G, Schenone P (1979) J Heterocycl Chem 16:177

    Article  CAS  Google Scholar 

  36. Almeida AIS, Silva AMS, Cavaleiro JAS (2010) Synlett 462

  37. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  40. Hariharan PA, Pople JA (1973) Theor Chim Acta 28:213

    Article  CAS  Google Scholar 

  41. McIver JW, Komornicki AK (1972) J Am Chem Soc 94:2625

    Article  CAS  Google Scholar 

  42. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  43. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  44. Ditchfield R (1974) Mol Phys 27:789

    Article  CAS  Google Scholar 

  45. London F (1937) J Phys Radium 8:397

    Article  CAS  Google Scholar 

  46. Bader RFW (1990) Atoms in molecules: a quantum theory; The International Series of Monographs of Chemistry. Halpen J, Green MLH (eds), Clarendon, Oxford

  47. Popelier PLA (2000) Atoms in molecules: an introduction. Prentice Hall, New York

  48. Popelier PLA (1994) Chem Phys Lett 228:160

    Article  CAS  Google Scholar 

  49. Rafat M, Devereux M, Popelier PLA (2005) J Mol Graphics Modell 24:111

    Article  CAS  Google Scholar 

  50. Popelier PLA with a contribution from Bone RGA, MORPHY98, A Topological Analysis Program (1999) UMIST, England, EU RGA

Download references

Acknowledgments

Thanks are due to the University of Aveiro, FCT, and FEDER for funding the Organic Chemistry Research Unit, the Project POCI/QUI/58835/2004 and the Portuguese National NMR Network (RNRMN). R.S.G.R.S. also thanks FCT for her PhD Grant (SFRH/BD/30734/2006). We thank the Ministerio de Ciencia e Innovación (project no. CTQ2009-13129-C02-02), the Spanish MEC (CTQ2007-62113), and the Comunidad Autónoma de Madrid (project MADRISOLAR2, ref. S2009/PPQ-1533) for continuing support. Thanks are given to the CTI (CSIC) for an allocation of computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur M. S. Silva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2,908 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seixas, R.S.G.R., Silva, A.M.S., Alkorta, I. et al. An experimental NMR and computational study of 4-quinolones and related compounds. Monatsh Chem 142, 731–742 (2011). https://doi.org/10.1007/s00706-011-0473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0473-y

Keywords

Navigation