Skip to main content
Log in

Synthesis, Characterization, and DFT Calculations of Quinoline and Quinazoline Derivatives

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Treatment of 3-methylcyclohexanone with ethyl formate in the presence of sodium methoxide afforded sodium (2-methyl-6-oxocyclohexylidene)methanolate which reacted with aminopyrazoles, aminotriazole, and aminotetrazole to produce fused quinazoline derivatives; its reactions with cyanothioacetamide, cyanoacetamide, and cyanoacetohydrazide gave tetrahydroquinoline-3-carbonitrile derivatives. The reactions of 8-methyl-2-sulfanyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile with alkylating agents led to the formation of thieno[2,3-b]quinoline derivatives. DFT computational studies of the synthesized compounds were carried out using B3LYP/6−311+G** and HF/6−311+G** approximations. The calculated HOMO and LUMO energies showed that charge transfer occurs in their molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Fischer, G., Adv. Heterocycl. Chem., 2007, vol. 95, p. 143. https://doi.org/10.1016/S0065-2725(07)95003-5

    Article  CAS  Google Scholar 

  2. Molina, P., Arques, A., Vinader, M.V., Becher, J., and Brondum, K., J. Org. Chem., 1988, vol. 53, p. 4654. https://doi.org/10.1021/jo00255a003

    Article  CAS  Google Scholar 

  3. Sato, Y., Shimoji, Y., Fujita, H., Nishino, H., Mizuno, H., Kobayashi, S., and Kumakura, S., J. Med. Chem., 1980, vol. 23, p. 927. https://doi.org/10.1021/jm00182a021

    Article  CAS  PubMed  Google Scholar 

  4. Ohnishi, H., Yamaguchi, K., Shimada, S., Suzuki, Y., and Kumagai, A., Life Sci., 1981, vol. 28, p. 1641. https://doi.org/10.1016/0024-3205(81)90320-9

    Article  CAS  PubMed  Google Scholar 

  5. Novinson, T., Springer, R., O’Brien, D.E., Scholten, M.B., Miller, J.P., and Robins, R.K., J. Med. Chem., 1982, vol. 25, p. 420. https://doi.org/10.1021/jm00346a017

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, N., Ayral-Kaloustian, S., Nguyen, T., Afragola, J., Hernandez, R., Lucas, J., and Beyer, C., J. Med. Chem., 2007, vol. 50, p. 319. https://doi.org/10.1021/jm060717i‏

    Article  CAS  PubMed  Google Scholar 

  7. Ashour, H.M., Shaaban, O.G., Rizk, O.H., and El-Ashmawy, I.M., Eur. J. Med. Chem., 2013, vol. 62, p. 341. https://doi.org/10.1016/j.ejmech.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  8. Kumar, R., Nair, R.R., Dhiman, S.S., Sharma, J., and Prakash, O., Eur. J. Med. Chem., 2009, vol. 44, p. 2260. https://doi.org/10.1016/j.ejmech.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  9. Marwaha, A., White, J., El-Mazouni, F., Creason, S.A., Kokkonda, S., Buckner, F.S., and Rathod, P.K., J. Med. Chem., 2012, vol. 55, p. 7425. https://doi.org/10.1021/jm300351w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guan, A., Liu, C., Yang, X., and Dekeyser, M., Chem. Rev., 2014, vol. 114, p. 7079. https://doi.org/10.1021/cr4005605

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez-Torres, M., Yoshida, E.M., Marcellin, P., Srinivasan, S., Purohit, V.S., Wang, C., and Hammond, J.L., Ann. Hepatol., 2014, vol. 13, p. 364. https://doi.org/10.1016/S1665-2681(19)30843-9

    Article  CAS  PubMed  Google Scholar 

  12. Common and Chemical Names of Herbicides Approved by the Weed Science Society of America, Weed Sci., 2000, vol. 48, no. 6, p. 786. https://doi.org/10.1614/0043-1745(2000)048[0786:CACNOH]2.0.CO;2

  13. Astakhov, A.V., Sokolov, A.N., Pyatakov, D.A., Shishkina, S.V., Shishkin, O.V., and Chernyshev, V.M., Chem. Heterocycl. Compds., 2015, vol. 51, p. 1039. https://doi.org/10.1007/s10593-016-1816-8

    Article  CAS  Google Scholar 

  14. Hu, M., Liu, X., Dong, F., Xu, J., Li, S., Xu, H., and Zheng, Y., Food Chem., 2015, vol. 175, p. 395. https://doi.org/10.1016/j.foodchem.2014.11.158

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, X., Zhang, M., Liu, J., Ge, J., and Yang, G., J. Agric. Food Chem., 2015, vol. 63, p. 3377. https://doi.org/10.1021/acs.jafc.5b00228

    Article  CAS  PubMed  Google Scholar 

  16. DeBoer, G.J., Thornburgh, S., Gilbert, J., and Gast, R.E., Pest Manage. Sci., 2011, vol. 67, p. 279. https://doi.org/

    Article  CAS  Google Scholar 

  17. Caballero, A.B., Rodríguez-Diéguez, A., Quirós, M., Salas, J.M., Huertas, Ó. Ramírez-Macías, I., and Sánchez-Moreno, M., Eur. J. Med. Chem., 2014, vol. 85, p. 526. https://doi.org/10.1016/j.ejmech.2014.08.026

    Article  CAS  PubMed  Google Scholar 

  18. Khalymbadzha, I.A., Shestakova, T.S., Subbotina, J.O., Eltsov, O.S., Musikhina, A.A., Rusinov, V.L., and Deev, S.L., Tetrahedron, 2014, vol. 70, p. 1298. https://doi.org/10.1016/j.tet.2013.12.051

    Article  CAS  Google Scholar 

  19. Lepri, S., Nannetti, G., Muratore, G., Cruciani, G., Ruzziconi, R., Mercorelli, B, and Goracci, L., J. Med. Chem., 2014, vol. 57, p. 4337. https://doi.org/10.1021/jm500300r

    Article  CAS  PubMed  Google Scholar 

  20. Massari, S., Nannetti, G., Desantis, J., Muratore, G., Sabatini, S., Manfroni, G., and Loregian, A., J. Med. Chem., 2015, vol. 58, p. 3830. https://doi.org/10.1021/acs.jmedchem.5b00012

    Article  CAS  PubMed  Google Scholar 

  21. Wang, L., Tian, Y., Chen, W., Liu, H., Zhan, P., Li, D., and Liu, X., Eur. J. Med. Chem., 2014, vol. 85, p. 293. https://doi.org/10.1016/j.ejmech.2014.07.104

    Article  CAS  PubMed  Google Scholar 

  22. Huang, B., Li, C., Chen, W., Liu, T., Yu, M., Fu, L., and Balzarini, J., Eur. J. Med. Chem., 2015, vol. 92, p. 754. https://doi.org/10.1016/j.ejmech.2015.01.042

    Article  CAS  PubMed  Google Scholar 

  23. Singer, R.A., Ragan, J.A., Bowles, P., Chisowa, E., Conway, B.G., Cordi, E.M., and Stanchina, C.L., Org. Process. Res. Dev., 2013, vol. 18, p. 26. https://doi.org/10.1021/op4002356

    Article  CAS  Google Scholar 

  24. Brigance, R.P., Meng, W., Fura, A., Harrity, T., Wang, A., Zahler, R., and Hamann, L.G., Bioorg. Med. Chem. Lett., 2010, vol. 20, p. 4395. https://doi.org/10.1016/j.bmcl.2010.06.063

    Article  CAS  PubMed  Google Scholar 

  25. Cornec, A.S., James, M.J., Kovalevich, J., Trojanowski, J.Q., Lee, V.M.Y., Smith, A.B., and Brunden, K.R., Bioorg. Med. Chem. Lett., 2015, vol. 25, p. 4980. https://doi.org/10.1016/j.bmcl.2015.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Faizi, M., Dabirian, S., Tajali, H., Ahmadi, F., Zavareh, E.R., Shahhosseini, S., and Tabatabai, S.A., Bioorg. Med. Chem., 2015, vol. 23, p. 480. https://doi.org/10.1016/j.bmc.2014.12.016

    Article  CAS  PubMed  Google Scholar 

  27. Lahmidi, S., El Hafi, M., Boulhaoua, M., Ejjoummany, A., El Jemli, M., Essassi, E.M., and Mague, J.T., J. Mol. Struct., 2019, vol. 1177, p. 131. https://doi.org/10.1016/j.molstruc.2018.09.046

    Article  CAS  Google Scholar 

  28. Caballero, A.B., Rodríguez-Diéguez, A., Quirós, M., Lezama, L., and Salas, J.M., Inorg. Chim. Acta, 2011, vol. 378, p. 194. https://doi.org/10.1016/j.ica.2011.08.060

    Article  CAS  Google Scholar 

  29. Małecki, J.G. and Kruszynski, R., Polyhedron, 2010, vol. 29, p. 1023. https://doi.org/10.1016/j.poly.2009.12.007

    Article  CAS  Google Scholar 

  30. Dobado, J.A., Grigoleit, S., and Molina, J.M., J. Chem. Soc., Perkin Trans. 2, 2000, vol. 8, p. 1675. https://doi.org/10.1039/B002527P

    Article  Google Scholar 

  31. Karabacak, M., Kose, E., Atac, A., Asiri, A.M., and Kurt, M., J. Mol. Struct., 2014, vol. 1058, p. 79. https://doi.org/10.1016/j.molstruc.2013.10.064

    Article  CAS  Google Scholar 

  32. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., AlLaham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision C.02, Wallingford CT: Gaussian, 2003.

  33. Mohamed, H.S.H. and Ahmed, S.A., J. Chem. Rev., 2019, vol. 1, p. 183. https://doi.org/10.33945/SAMI/JCR.2019.3.3

    Article  Google Scholar 

  34. Abdel-Latif, M.K., Abd El-Mageed, H.R., Mohamed, H.S., and Mustafa, F.M., J. Mol. Struct., 2020, vol. 1200, article ID 127056. https://doi.org/10.1016/j.molstruc.2019.127056

  35. Ahmed, S.A., Osama, M.A., and Mohamed, H.S., J. Pharm. Res., 2014, vol. 8, p. 1303.

    CAS  Google Scholar 

  36. Mohamed, H.S., Gad, M.N., El-Zanaty, A.M., and Ahmed, A.A., Pharma Chem., 2018, vol. 10, no. 5, p. 121.

    CAS  Google Scholar 

  37. Ahmed, S.A., and Mohamed, H.S., Int. J. Adv. Res., 2014, vol. 2, p. 865.

    CAS  Google Scholar 

  38. Becke, A.D., J. Chem. Phys., 1996, vol. 104, p. 1040. https://doi.org/10.1063/1.470829

    Article  CAS  Google Scholar 

  39. Becke, A.D., J. Chem. Phys., 1997, vol. 107, p. 8554. https://doi.org/10.1063/1.475007

    Article  CAS  Google Scholar 

  40. Raghavachari, K., Trucks, G.W., Pople, J.A., and Head-Gordon, M., Chem. Phys. Lett., 1989, vol. 157, p. 479. https://doi.org/10.1016/S0009-2614(89)87395-6

    Article  CAS  Google Scholar 

  41. Jain, R., Ahuja, B., and Sharma, B., Indian J. Pure Appl. Phys., 2004, vol. 42, p. 43. http://nopr.niscair.res.in/handle/123456789/9566

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Mohamed.

Ethics declarations

The authors declare no conflict of interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, H.S., Abdel-Latif, M.K. & Ahmed, S. Synthesis, Characterization, and DFT Calculations of Quinoline and Quinazoline Derivatives. Russ J Org Chem 56, 1660–1668 (2020). https://doi.org/10.1134/S1070428020090250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020090250

Keywords:

Navigation