Skip to main content

Advertisement

Log in

Temporal lineage dynamics of the ORF5 gene of porcine reproductive and respiratory syndrome virus in Korea in 2014–2019

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) is the most important pathogen in the Korean swine industry. Despite efforts including improved biosecurity and vaccination protocols, the virus continues to circulate and evolve. Based on phylogenetic analysis of open reading frame 5 (ORF5), Korean PRRSVs are known to form not only globally circulating lineages but also country-specific lineages (Lin Kor A, B, and C). To understand the recent epidemiological status of PRRSV in Korea, a total of 1349 ORF5 sequences of Korean PRRSV isolates from 2014 to 2019 were analyzed. Phylogenetic analysis was conducted using the maximum-likelihood method, and temporal changes in the relative prevalence of lineages were investigated. The analysis showed that PRRSV1 and PRRSV2 were both highly prevalent throughout the years examined. Among the PRRSV1 isolates, subgroup A (90.1%) and vaccine-like subgroup C (9.0%) composed most of the population. For PRRSV2 isolates, vaccine-like lineage 5 (36.3%) was dominant, followed by Lin Kor B (25.9%), Kor C (16.6%), lineage 1 (11.6%), and Kor A (9.1%). The PRRSV2 lineage 1 population increased from 2014 (1.8%) to 2019 (29.6%) in Korea due to the continual spread of sublineage 1.8 (NADC30-like) and introduction of sublineage 1.6 into the country. Additional genetic analysis, including analysis of non synonymous and synonymous mutations, revealed evidence of diversification and positive selection in immunologically important regions of the genome, suggesting that current vaccination is failing and promoting immune-mediated selection. Overall, these findings provide insights into the epidemiological and evolutionary dynamics of cocirculating viral lineages, and constant surveillance of PRRSV occurrence is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alkhamis MA, Perez AM, Murtaugh MP, Wang X, Morrison RB (2016) Applications of Bayesian phylodynamic methods in a recent US porcine reproductive and respiratory syndrome virus outbreak. Front Microbiol 7:67

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ansari IH, Kwon B, Osorio FA, Pattnaik AK (2006) Influence of N-linked glycosylation of porcine reproductive and respiratory syndrome virus GP5 on virus infectivity, antigenicity, and ability to induce neutralizing antibodies. J Virol 80:3994–4004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Argimón S, Abudahab K, Goater RJ, Fedosejev A, Bhai J, Glasner C, Feil EJ, Holden MT, Yeats CA, Grundmann H (2016) Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Microb Genom. https://doi.org/10.1099/mgen.0.000093

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cha S-H, Choi E-J, Park J-H, Yoon S-R, Song J-Y, Kwon J-H, Song H-J, Yoon K-J (2006) Molecular characterization of recent Korean porcine reproductive and respiratory syndrome (PRRS) viruses and comparison to other Asian PRRS viruses. Vet Microbiol 117:248–257

    Article  CAS  PubMed  Google Scholar 

  5. Chen N, Liu Q, Qiao M, Deng X, Chen X, Sun M (2017) Whole genome characterization of a novel porcine reproductive and respiratory syndrome virus 1 isolate: genetic evidence for recombination between Amervac vaccine and circulating strains in mainland China. Infect Genet Evol 54:308–313

    Article  CAS  PubMed  Google Scholar 

  6. Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Delisle B, Gagnon CA, Lambert M-È, D’Allaire S (2012) Porcine reproductive and respiratory syndrome virus diversity of Eastern Canada swine herds in a large sequence dataset reveals two hypervariable regions under positive selection. Infect Genet Evol 12:1111–1119

    Article  PubMed  Google Scholar 

  8. Díaz I, Pujols J, Ganges L, Gimeno M, Darwich L, Domingo M, Mateu E (2009) In silico prediction and ex vivo evaluation of potential T-cell epitopes in glycoproteins 4 and 5 and nucleocapsid protein of genotype-I (European) of porcine reproductive and respiratory syndrome virus. Vaccine 27:5603–5611

    Article  PubMed  CAS  Google Scholar 

  9. Díaz I, Gimeno M, Darwich L, Navarro N, Kuzemtseva L, López S, Galindo I, Segalés J, Martín M, Pujols J (2012) Characterization of homologous and heterologous adaptive immune responses in porcine reproductive and respiratory syndrome virus infection. Vet Res 43:1–15

    Article  CAS  Google Scholar 

  10. Eclercy J, Renson P, Lebret A, Hirchaud E, Normand V, Andraud M, Paboeuf F, Blanchard Y, Rose N, Bourry O (2019) A field recombinant strain derived from two type 1 porcine reproductive and respiratory syndrome virus (PRRSV-1) modified live vaccines shows increased viremia and transmission in SPF pigs. Viruses 11:296

    Article  CAS  PubMed Central  Google Scholar 

  11. Geldhof MF, Vanhee M, Van Breedam W, Van Doorsselaere J, Karniychuk UU, Nauwynck HJ (2012) Comparison of the efficacy of autogenous inactivated Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) vaccines with that of commercial vaccines against homologous and heterologous challenges. BMC Vet Res 8:1–16

    Article  Google Scholar 

  12. Guo Z, Chen X-x, Li R, Qiao S, Zhang G (2018) The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: a molecular epidemiological perspective. Virol J 15:1–14

    Article  CAS  Google Scholar 

  13. Gupta S, Ferguson N, Anderson R (1998) Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280:912–915

    Article  CAS  PubMed  Google Scholar 

  14. Han J, Wang Y, Faaberg KS (2006) Complete genome analysis of RFLP 184 isolates of porcine reproductive and respiratory syndrome virus. Virus Res 122:175–182

    Article  CAS  PubMed  Google Scholar 

  15. Hanada K, Suzuki Y, Nakane T, Hirose O, Gojobori T (2005) The origin and evolution of porcine reproductive and respiratory syndrome viruses. Mol Biol Evol 22:1024–1031

    Article  CAS  PubMed  Google Scholar 

  16. Holtkamp DJ, Kliebenstein JB, Neumann E, Zimmerman JJ, Rotto H, Yoder TK, Wang C, Yeske P, Mowrer CL, Haley CA (2013) Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J Swine Health Prod 21:72

    Google Scholar 

  17. Hu J, Zhang C (2014) Porcine reproductive and respiratory syndrome virus vaccines: current status and strategies to a universal vaccine. Transbound Emerg Dis 61:109–120

    Article  CAS  PubMed  Google Scholar 

  18. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  19. Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP (2011) Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J Gen Virol 92:1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kang H, Yu JE, Shin J-E, Kang A, Kim W-I, Lee C, Lee J, Cho I-S, Choe S-E, Cha S-H (2018) Geographic distribution and molecular analysis of porcine reproductive and respiratory syndrome viruses circulating in swine farms in the Republic of Korea between 2013 and 2016. BMC Vet Res 14:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Keffaber K (1989) Reproduction failure of unknown etiology. Am Assoc Swine Pract Newsl 1:1–9

    Google Scholar 

  22. Kim H, Nguyen V, Kim I, Park J, Park S, Rho S, Han J, Park B (2012) Epidemiologic and phylogenetic characteristics of porcine reproductive and respiratory syndrome viruses in conventional swine farms of Jeju Island as a candidate region for PRRSV eradication. Transbound Emerg Dis 59:62–71

    Article  CAS  PubMed  Google Scholar 

  23. Kim J-Y, Lee S-Y, Sur J-H, Lyoo YS (2006) Serological and genetic characterization of the European strain of the porcine reproductive and respiratory syndrome virus isolated in Korea. Korean J Vet Res 46:363–370

    Google Scholar 

  24. Kim S-H, Roh I-S, Choi E-J, Lee C, Lee C-H, Lee K-H, Lee K-K, Song Y-K, Lee O-S, Park C-K (2010) A molecular analysis of European porcine reproductive and respiratory syndrome virus isolated in South Korea. Vet Microbiol 143:394–400

    Article  CAS  PubMed  Google Scholar 

  25. Kosakovsky Pond SL, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222

    Article  PubMed  CAS  Google Scholar 

  26. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35:4453–4455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kucharski AJ, Andreasen V, Gog JR (2016) Capturing the dynamics of pathogens with many strains. J Math Biol 72:1–24

    Article  PubMed  Google Scholar 

  28. Kuhn JH, Lauck M, Bailey AL, Shchetinin AM, Vishnevskaya TV, Bao Y, Ng TF, LeBreton M, Schneider BS, Gillis A, Tamoufe U, Diffo Jle D, Takuo JM, Kondov NO, Coffey LL, Wolfe ND, Delwart E, Clawson AN, Postnikova E, Bollinger L, Lackemeyer MG, Radoshitzky SR, Palacios G, Wada J, Shevtsova ZV, Jahrling PB, Lapin BA, Deriabin PG, Dunowska M, Alkhovsky SV, Rogers J, Friedrich TC, O’Connor DH, Goldberg TL (2016) Reorganization and expansion of the nidoviral family Arteriviridae. Arch Virol 161:755–768

    Article  CAS  PubMed  Google Scholar 

  29. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kvisgaard LK, Kristensen CS, Ryt-Hansen P, Pedersen K, Stadejek T, Trebbien R, Andresen LO, Larsen LE (2020) A recombination between two Type 1 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-1) vaccine strains has caused severe outbreaks in Danish pigs. Transbound Emerg Dis 67:1786–1796

    Article  CAS  PubMed Central  Google Scholar 

  31. Kwon T, Yoo SJ, Lee D-U, Sunwoo SY, Sang HJ, Park JW, Kim M-H, Park C-K, Lyoo YS (2019) Differential evolution of antigenic regions of porcine reproductive and respiratory syndrome virus 1 before and after vaccine introduction. Virus Res 260:12–19

    Article  CAS  PubMed  Google Scholar 

  32. Kwon T, Yoo SJ, Sunwoo SY, Lee D-U, Sang HJ, Park JW, Park C-K, Lyoo YS (2019) Independent evolution of porcine reproductive and respiratory syndrome virus 2 with genetic heterogeneity in antigenic regions of structural proteins in Korea. Adv Virol 164:213–224

    CAS  Google Scholar 

  33. Labarque G, Van Reeth K, Nauwynck H, Drexler C, Van Gucht S, Pensaert M (2004) Impact of genetic diversity of European-type porcine reproductive and respiratory syndrome virus strains on vaccine efficacy. Vaccine 22:4183–4190

    Article  CAS  PubMed  Google Scholar 

  34. Lambert M-È, Delisle B, Arsenault J, Poljak Z, D’Allaire S (2019) Positioning Quebec ORF5 sequences of porcine reproductive and respiratory syndrome virus (PRRSV) within Canada and worldwide diversity. Infect Gen Evolut 74:103999

    Article  CAS  Google Scholar 

  35. Lee C, Kim H, Kang B, Yeom M, Han S, Moon H, Park S, Kim H, Song D, Park B (2010) Prevalence and phylogenetic analysis of the isolated type I porcine reproductive and respiratory syndrome virus from 2007 to 2008 in Korea. Virus Genes 40:225–230

    Article  CAS  PubMed  Google Scholar 

  36. Lin W-H, Kaewprom K, Wang S-Y, Lin C-F, Yang C-Y, Chiou M-T, Lin C-N (2020) Outbreak of porcine reproductive and respiratory syndrome Virus 1 in Taiwan. Viruses 12:316

    Article  CAS  PubMed Central  Google Scholar 

  37. Lin WH, Shih HC, Wang SY, Lin CF, Yang CY, Chiou MT, Lin CN (2019) Emergence of a virulent porcine reproductive and respiratory syndrome virus in Taiwan in 2018. Transbound Emerg Dis 66:1138–1141

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lisowska E (2002) The role of glycosylation in protein antigenic properties. Cell Mol Life Sci CMLS 59:445–455

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Wei C, Lin Z, Xia W, Ma Y, Dai A, Yang X (2019) Full genome sequence analysis of a 1-7-4-like PRRSV strain in Fujian Province, China. PeerJ 7:e7859

    Article  PubMed  PubMed Central  Google Scholar 

  40. López-Labrador FX, Moya A, Gonzàlez-Candelas F (2008) Mapping natural polymorphisms of hepatitis C virus NS3/4A protease and antiviral resistance to inhibitors in worldwide isolates. Antivir Ther 13:481

    Article  PubMed  Google Scholar 

  41. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolut. https://doi.org/10.1093/ve/vev003

    Article  Google Scholar 

  42. Marton S, Szalay D, Kecskeméti S, Forró B, Olasz F, Zádori Z, Szabó I, Molnár T, Bányai K, Bálint Á (2019) Coding-complete sequence of a vaccine-derived recombinant porcine reproductive and respiratory syndrome virus strain isolated in Hungary. Adv Virol 164:2605–2608

    CAS  Google Scholar 

  43. Mokhtar H, Eck M, Morgan SB, Essler SE, Frossard J-P, Ruggli N, Graham SP (2014) Proteome-wide screening of the European porcine reproductive and respiratory syndrome virus reveals a broad range of T cell antigen reactivity. Vaccine 32:6828–6837

    Article  CAS  PubMed  Google Scholar 

  44. Murtaugh MP, Stadejek T, Abrahante JE, Lam TT, Leung FC-C (2010) The ever-expanding diversity of porcine reproductive and respiratory syndrome virus. Virus Res 154:18–30

    Article  CAS  PubMed  Google Scholar 

  45. Nam E, Park C-K, Kim S-H, Joo Y-S, Yeo S-G, Lee C (2009) Complete genomic characterization of a European type 1 porcine reproductive and respiratory syndrome virus isolate in Korea. Adv Virol 154:629–638

    CAS  Google Scholar 

  46. Nan Y, Wu C, Gu G, Sun W, Zhang Y-J, Zhou E-M (2017) Improved vaccine against PRRSV: current progress and future perspective. Front Microbiol 8:1635

    Article  PubMed  PubMed Central  Google Scholar 

  47. Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, Green AL, Zimmerman JJ (2005) Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc 227:385–392

    Article  PubMed  Google Scholar 

  48. Paploski IAD, Corzo C, Rovira A, Murtaugh MP, Sanhueza JM, Vilalta C, Schroeder DC, VanderWaal K (2019) Temporal dynamics of co-circulating lineages of porcine reproductive and respiratory syndrome virus. Front Microbiol 10:2486

    Article  PubMed  PubMed Central  Google Scholar 

  49. Park J, Choi S, Jeon JH, Lee K-W, Lee C (2020) Novel lineage 1 recombinants of porcine reproductive and respiratory syndrome virus isolated from vaccinated herds: genome sequences and cytokine production profiles. Adv Virol 165:2259–2277

    CAS  Google Scholar 

  50. Pirzadeh B, Gagnon CA, Dea S (1998) Genomic and antigenic variations of porcine reproductive and respiratory syndrome virus major envelope GP5 glycoprotein. Can J Vet Res 62:170

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Plagemann P, Rowland R, Faaberg K (2002) The primary neutralization epitope of porcine respiratory and reproductive syndrome virus strain VR-2332 is located in the middle of the GP5 ectodomain. Adv Virol 147:2327–2347

    CAS  Google Scholar 

  52. Pond SLK, Muse SV (2005) HyPhy: hypothesis testing using phylogenies Statistical methods in molecular evolution. Springer, pp 125–181

    Google Scholar 

  53. Popescu LN, Trible BR, Chen N, Rowland RR (2017) GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) as a target for homologous and broadly neutralizing antibodies. Vet Microbiol 209:90–96

    Article  CAS  PubMed  Google Scholar 

  54. Ramírez M, Bauermann FV, Navarro D, Rojas M, Manchego A, Nelson EA, Diel DG, Rivera H (2019) Detection of porcine reproductive and respiratory syndrome virus (PRRSV) 1-7-4-type strains in Peru. Transbound Emerg Dis 66:1107–1113

    Article  PubMed  CAS  Google Scholar 

  55. Shi M, Lam TT-Y, Hon C-C, Hui RK-H, Faaberg KS, Wennblom T, Murtaugh MP, Stadejek T, Leung FC-C (2010) Molecular epidemiology of PRRSV: a phylogenetic perspective. Virus Res 154:7–17

    Article  CAS  PubMed  Google Scholar 

  56. Shi M, Lam TT-Y, Hon C-C, Murtaugh MP, Davies PR, Hui RK-H, Li J, Wong LT-W, Yip C-W, Jiang J-W (2010) Phylogeny-based evolutionary, demographical, and geographical dissection of North American type 2 porcine reproductive and respiratory syndrome viruses. J Virol 84:8700–8711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shi M, Lemey P, Brar MS, Suchard MA, Murtaugh MP, Carman S, D’Allaire S, Delisle B, Lambert M-È, Gagnon CA (2013) The spread of type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in North America: a phylogeographic approach. Virology 447:146–154

    Article  CAS  PubMed  Google Scholar 

  58. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sun YK, Chen YJ, Cai Y, Li Q, Xie JX, Liang G, Gao Q, Yu ZQ, Lu G, Huang LZ (2020) Insights into the evolutionary history and epidemiological characteristics of the emerging lineage 1 porcine reproductive and respiratory syndrome viruses in China. Transbound Emerg Dis 67:2630–2641

    Article  CAS  PubMed  Google Scholar 

  60. van Geelen AGM, Anderson TK, Lager KM, Das PB, Otis NJ, Montiel NA, Miller LC, Kulshreshtha V, Buckley AC, Brockmeier SL, Zhang J, Gauger PC, Harmon KM, Faaberg KS (2018) Porcine reproductive and respiratory disease virus: Evolution and recombination yields distinct ORF5 RFLP 1-7-4 viruses with individual pathogenicity. Virology 513:168–179

    Article  PubMed  CAS  Google Scholar 

  61. Vanhee M, Van Breedam W, Costers S, Geldhof M, Noppe Y, Nauwynck H (2011) Characterization of antigenic regions in the porcine reproductive and respiratory syndrome virus by the use of peptide-specific serum antibodies. Vaccine 29:4794–4804

    Article  CAS  PubMed  Google Scholar 

  62. Vu HL, Kwon B, Yoon K-J, Laegreid WW, Pattnaik AK, Osorio FA (2011) Immune evasion of porcine reproductive and respiratory syndrome virus through glycan shielding involves both glycoprotein 5 as well as glycoprotein 3. J Virol 85:5555–5564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang X (2016) Immunological selection as a driver of porcine reproductive and respiratory syndrome virus (PRRSV) evolution  (Doctoral dissertation). University of Minnesota, Minneapolis

  64. Wickham H, Averick M, Bryan J, Chang W, McGowan LDA, François R, Grolemund G, Hayes A, Henry L, Hester J (2019) Welcome to the Tidyverse. J Open Sour Softw 4:1686

    Article  Google Scholar 

  65. Wissink E, van Wijk H, Kroese M, Weiland E, Meulenberg J, Rottier P, van Rijn P (2003) The major envelope protein, GP5, of a European porcine reproductive and respiratory syndrome virus contains a neutralization epitope in its N-terminal ectodomain. J Gen Virol 84:1535–1543

    Article  CAS  PubMed  Google Scholar 

  66. Wissink E, Kroese M, Van Wijk H, Rijsewijk F, Meulenberg J, Rottier P (2005) Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus. J Virol 79:12495–12506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yu G, Smith DK, Zhu H, Guan Y, Lam TTY (2017) ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 8:28–36

    Article  Google Scholar 

  68. Zhang H-L, Zhang W-L, Xiang L-R, Leng C-L, Tian Z-J, Tang Y-D, Cai X-H (2018) Emergence of novel porcine reproductive and respiratory syndrome viruses (ORF5 RFLP 1-7-4 viruses) in China. Vet Microbiol 222:105–108

    Article  CAS  PubMed  Google Scholar 

  69. Zhang H, Leng C, Ding Y, Zhai H, Li Z, Xiang L, Zhang W, Liu C, Li M, Chen J (2019) Characterization of newly emerged NADC30-like strains of porcine reproductive and respiratory syndrome virus in China. Adv Virol 164:401–411

    CAS  Google Scholar 

  70. Zhao H, Han Q, Zhang L, Zhang Z, Wu Y, Shen H, Jiang P (2017) Emergence of mosaic recombinant strains potentially associated with vaccine JXA1-R and predominant circulating strains of porcine reproductive and respiratory syndrome virus in different provinces of China. Virol J 14:1–10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant (Z-1543069-2017-20-1) from the Animal and Plant Quarantine Agency (QIA) and Animal Disease Management Technology Development Program (320060-02) of the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Funding

This study was supported by a Grant (Z-1543069-2017-20-1) from the Animal and Plant Quarantine Agency (QIA) and Animal Disease Management Technology Development Program (320060-02) of the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, W.-I.K. and K.-K.L.; methodology, S.-C.K.; software, S.-C.K.; validation, J.-Y.P. and H.-Y.J.; formal analysis, S.-C.K.; investigation, S.-C.K.; resources, G.-S.P., S.-H.K., G.-E.S. and M.-K.K.; data curation, S.-C.K.; writing—original draft preparation, S.-C.K.; writing—review and editing, W.-I.K.; visualization, S.-C.K.; supervision, W.-I.K.; project administration, C.-G.J.; funding acquisition, W.-I.K. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Won-Il Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Sheela Ramamoorthy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SC., Jeong, CG., Park, GS. et al. Temporal lineage dynamics of the ORF5 gene of porcine reproductive and respiratory syndrome virus in Korea in 2014–2019. Arch Virol 166, 2803–2815 (2021). https://doi.org/10.1007/s00705-021-05169-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05169-w

Navigation