Skip to main content
Log in

Pathway analysis in blood cells of pigs infected with classical swine fever virus: comparison of pigs that develop a chronic form of infection or recover

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Infection of pigs with CSFV can lead to either acute disease, resulting in death or recovery, or chronic disease. The mechanisms by which CSFV manipulates the pig’s first line of defence to establish a chronic infection are poorly understood. Therefore, pigs were infected with moderately virulent CSFV, and whole blood was collected on a regular basis during a period of 18 days. Using whole-genome microarrays, time-dependent changes in gene expression were recorded in blood cells of chronically diseased pigs and pigs that recovered. Bioinformatics analysis of regulated genes indicated that different immunological pathways were regulated in chronically diseased pigs compared to recovered pigs. In recovered pigs, antiviral defence mechanisms were rapidly activated, whereas in chronically diseased pigs, several genes with the potential to inhibit NF-κB- and IRF3/7-mediated transcription of type I interferons were up-regulated. Compared to recovered pigs, chronically diseased pigs failed to activate NK or cytotoxic T-cell pathways, and they showed decreased gene activity in antigen-presenting monocytes/macrophages. Remarkably, in chronically diseased pigs, genes related to the human autoimmune disease systemic lupus erythematosus (SLE) were up-regulated during the whole period of 18 days. CSFV pathology in kidney and skin resembles that of SLE. Furthermore, enzymes involved in the degradation of 1,25-dihydroxyvitamin D3 and of tryptophan to kynurenines were expressed at different levels in chronically diseased and recovered pigs. Both of these chemical processes may affect the functions of T helper/regulatory cells that are crucial for tempering the inflammatory response after a viral infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akashi-Takamura S, Miyake K (2008) TLR accessory molecules. Curr Opin Immunol 20:420–425

    Article  PubMed  CAS  Google Scholar 

  2. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C (2010) Vitamin D: modulator of the immune system. Curr Opin Pharmacol 10:482–496

    Article  PubMed  CAS  Google Scholar 

  3. Balmelli C, Vincent IE, Rau H, Guzylack-Piriou L, McCullough K, Summerfield A (2005) Fc gamma RII-dependent sensitisation of natural interferon-producing cells for viral infection and interferon-alpha responses. Eur J Immunol 35:2406–2415

    Article  PubMed  CAS  Google Scholar 

  4. Bauhofer O, Summerfield A, McCullough KC, Ruggli N (2005) Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells. Virology 343:93–105

    Article  PubMed  CAS  Google Scholar 

  5. Bauhofer O, Summerfield A, Sakoda Y, Tratschin JD, Hofmann MA, Ruggli N (2007) Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81:3087–3096

    Article  PubMed  CAS  Google Scholar 

  6. Becerra A, Warke RV, Xhaja K, Evans B, Evans J, Martin K, de Bosch N, Rothman AL, Bosch I (2009) Increased activity of indoleamine 2,3-dioxygenase in serum from acutely infected dengue patients linked to gamma interferon antiviral function. J Gen Virol 90:810–817

    Article  PubMed  CAS  Google Scholar 

  7. Böckle BC, Baltaci M, Ratzinger G, Graziadei I, Vogel W, Sepp NT (2011) Hepatitis C and autoimmunity: a therapeutic challenge. J Intern Med. doi:101111/j1365-2796.2011.02391x

    PubMed  Google Scholar 

  8. Cohen L, Henzel WJ, Baeuerle PA (1998) IKAP is a scaffold protein of the IkappaB kinase complex. Nature 395:292–296

    Article  PubMed  CAS  Google Scholar 

  9. Depner KR, Hinrichs U, Bickhardt K, Greiser-Wilke I, Pohlenz J, Moennig V, Liess B (1997) Influence of breed-related factors on the course of classical swine fever virus infection. Vet Rec 140:506–507

    Article  PubMed  CAS  Google Scholar 

  10. Doceul V, Charleston B, Crooke H, Reid E, Powell PP, Seago J (2008) The Npro product of classical swine fever virus interacts with IkappaBalpha, the NF-kappaB inhibitor. J Gen Virol 89:1881–1889

    Article  PubMed  CAS  Google Scholar 

  11. Durand SV, Hulst MM, de Wit AA, Mastebroek L, Loeffen WL (2009) Activation and modulation of antiviral and apoptotic genes in pigs infected with classical swine fever viruses of high, moderate or low virulence. Arch Virol 154:1417–1431

    Article  PubMed  CAS  Google Scholar 

  12. Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, Inui M, Moro S, Modena N, Argenton F, Newfeld SJ, Piccolo S (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell 136:123–135

    Article  PubMed  CAS  Google Scholar 

  13. Dynek JN, Goncharov T, Dueber EC, Fedorova AV, Izrael-Tomasevic A, Phu L, Helgason E, Fairbrother WJ, Deshayes K, Kirkpatrick DS, Vucic D (2010) c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 29:4198–4209

    Article  PubMed  CAS  Google Scholar 

  14. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J (2000) BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165:6037–6046

    PubMed  CAS  Google Scholar 

  15. Finney DJ (1978) Statistical methods in biological assay. Charles Griffin & Company LTD, London

    Google Scholar 

  16. Gehrie E, Van der Touw W, Bromberg JS, Ochando JC (2011) Plasmacytoid dendritic cells in tolerance. Methods Mol Biol 677:127–147

    Article  PubMed  Google Scholar 

  17. Gilliet M, Lande R (2008) Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Curr Opin Immunol 20:401–407

    Article  PubMed  CAS  Google Scholar 

  18. Gonen H, Bercovich B, Orian A, Carrano A, Takizawa C, Yamanaka K, Pagano M, Iwai K, Ciechanover A (1999) Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IkappaBalpha. J Biol Chem 274:14823–14830

    Article  PubMed  CAS  Google Scholar 

  19. Goon PK, Lip GY, Boos CJ, Stonelake PS, Blann AD (2006) Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 8:79–88

    Article  PubMed  CAS  Google Scholar 

  20. Graf C, Stankiewicz M, Nikolay R, Mayer MP (2010) Insights into the conformational dynamics of the E3 ubiquitin ligase CHIP in complex with chaperones and E2 enzymes. Biochemistry 49:2121–2129

    Article  PubMed  CAS  Google Scholar 

  21. Greiser-Wilke I, Fritzemeier J, Koenen F, Vanderhallen H, Rutili D, De Mia GM, Romero L, Rosell R, Sanchez-Vizcaino JM, San Gabriel A (2000) Molecular epidemiology of a large classical swine fever epidemic in the European Union in 1997–1998. Vet Microbiol 77:17–27

    Article  PubMed  CAS  Google Scholar 

  22. Guaní-Guerra E, Santos-Mendoza T, Lugo-Reyes SO, Terán LM (2010) Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin Immunol 135:1–11

    Article  PubMed  Google Scholar 

  23. Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA 107:9813–9818

    Article  PubMed  CAS  Google Scholar 

  24. Hayashi T, Mo JH, Gong X, Rossetto C, Jang A, Beck L, Elliott GI, Kufareva I, Abagyan R, Broide DH, Lee J, Raz E (2007) 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc Natl Acad Sci USA 104:18619–18624

    Article  PubMed  CAS  Google Scholar 

  25. Heine G, Niesner U, Chang HD, Steinmeyer A, Zügel U, Zuberbier T, Radbruch A, Worm M (2008) 1,25-dihydroxyvitamin D[3] promotes IL-10 production in human B cells. Eur J Immunol 38:2210–2218

    Article  PubMed  CAS  Google Scholar 

  26. Hilton L, Moganeradj K, Zhang G, Chen YH, Randall RE, McCauley JW, Goodbourn S (2006) The NPro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J Virol 80:11723–11732

    Article  PubMed  CAS  Google Scholar 

  27. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  28. Hulst M, Himes G, Newbigin E, Moormann R (1994) Glycoprotein E2 of classical swine fever virus: expression in insect cells and identification as a ribonuclease. Virology 200:558–565

    Article  PubMed  CAS  Google Scholar 

  29. Hwu P, Du MX, Lapointe R, Do M, Taylor MW, Young HA (2000) Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164:3596–3599

    PubMed  CAS  Google Scholar 

  30. Iqbal M, Poole E, Goodbourn S, McCauley JW (2004) Role for bovine viral diarrhea virus Erns glycoprotein in the control of activation of beta interferon by double-stranded RNA. J Virol 78:136–145

    Article  PubMed  CAS  Google Scholar 

  31. Kahler D, Mellor AL (2009) T Cell regulatory plasmacytoid dendritic cells expressing indoleamine 2,3 dioxygenase. In: Lombardi G, Vasquez YR (eds) “Dendritic Cells”; Handbook of experimental pharmacology, vol 188. Handb Exp Pharmacol, pp 165–196

  32. Ke PY, Chen SS (2011) Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J Clin Invest 121:37–56

    Article  PubMed  CAS  Google Scholar 

  33. Krey T, Himmelreich A, Heimann M, Menge C, Thiel HJ, Maurer K, Rümenapf T (2006) Function of bovine CD46 as a cellular receptor for bovine viral diarrhea virus is determined by complement control protein 1. J Virol 80:3912–3922

    Article  PubMed  CAS  Google Scholar 

  34. La Rocca SA, Herbert RJ, Crooke H, Drew TW, Wileman TE, Powell PP (2005) Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro. J Virol 79:7239–7247

    Article  PubMed  Google Scholar 

  35. Malakhova OA, Kim KI, Luo JK, Zou W, Kumar KG, Fuchs SY, Shuai K, Zhang DE (2006) UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J 25:2358–2367

    Article  PubMed  CAS  Google Scholar 

  36. Magkouras I, Matzener P, Rumenapf T, Peterhans E, Schweizer M (2008) RNase-dependent inhibition of extracellular, but not intracellular, dsRNA-induced interferon synthesis by Erns of pestiviruses. J Gen Virol 89:2501–2506

    Article  PubMed  CAS  Google Scholar 

  37. Mätzener P, Magkouras I, Rümenapf T, Peterhans E, Schweizer M (2008) The viral RNase E(rns) prevents IFN type-I triggering by pestiviral single- and double-stranded RNAs. Virus Res 140:15–23

    Article  PubMed  Google Scholar 

  38. McCullough K, Ruggli N, Summerfield A (2009) Dendritic cells: at the front-line of pathogen attack. Vet Immunol Immunopathol 128:7–15

    Article  PubMed  CAS  Google Scholar 

  39. Mellor AL, Munn DH (2011) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774

    Article  Google Scholar 

  40. Meyers G, Thiel HJ (1996) Molecular characterization of pestiviruses. Adv Virus Res 47:53–118

    Article  PubMed  CAS  Google Scholar 

  41. Meyers G, Saalmuller A, Buttner M (1999) Mutations abrogating the RNase activity in glycoprotein E(rns) of the pestivirus classical swine fever virus lead to virus attenuation. J Virol 73:10224–10235

    PubMed  CAS  Google Scholar 

  42. Meyers G, Ege A, Fetzer C, von Freyburg M, Elbers K, Carr V, Prentice H, Charleston B, Schürmann EM (2007) Bovine viral diarrhea virus: prevention of persistent fetal infection by a combination of two mutations affecting Erns RNase and Npro protease. J Virol 81:3327–3338

    Article  PubMed  CAS  Google Scholar 

  43. Mihlan M, Blom AM, Kupreishvili K, Lauer N, Stelzner K, Bergström F, Niessen HW, Zipfel PF (2011) Monomeric C-reactive protein modulates classic complement activation on necrotic cells. FASEB J 25:4198–4210

    Article  PubMed  CAS  Google Scholar 

  44. Mittelholzer C, Moser C, Tratschin JD, Hofmann MA (2000) Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol 74:293–308

    Article  CAS  Google Scholar 

  45. Moennig V, Floegel-Niesmann G, Greiser-Wilke I (2003) Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J 165:11–20

    Article  PubMed  CAS  Google Scholar 

  46. Niewold TA, Kerstens HH, van der Meulen J, Smits MA, Hulst MM (2005) Development of a porcine small intestinal cDNA micro-array: characterization and functional analysis of the response to enterotoxigenic E coli. Vet Immunol Immunopathol 105:317–329

    Article  PubMed  CAS  Google Scholar 

  47. Peschiaroli A, Skaar JR, Pagano M, Melino G (2010) The ubiquitin-specific protease USP47 is a novel beta-TRCP interactor regulating cell survival. Oncogene 29:1384–1393

    Article  PubMed  CAS  Google Scholar 

  48. Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358:929–939

    Article  PubMed  CAS  Google Scholar 

  49. Renson P, Blanchard Y, Le Dimna M, Felix H, Cariolet R, Jestin A, Le Potier MF (2010) Acute induction of cell death-related IFN stimulated genes (ISG) differentiates highly from moderately virulent CSFV strains. Vet Res 41:07

    Article  Google Scholar 

  50. Ruggli N, Tratschin JD, Schweizer M, McCullough KC, Hofmann MA, Summerfield A (2003) Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of N(pro). J Virol 77:7645–7654

    Article  PubMed  CAS  Google Scholar 

  51. Ruggli N, Bird BH, Liu L, Bauhofer O, Tratschin JD, Hofmann MA (2005) N(pro) of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/beta induction. Virology 340:265–276

    Article  PubMed  CAS  Google Scholar 

  52. Ruggli N, Summerfield A, Fiebach AR, Guzylack-Piriou L, Bauhofer O, Lamm CG, Waltersperger S, Matsuno K, Liu L, Gerber M, Choi KH, Hofmann MA, Sakoda Y, Tratschin JD (2009) Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro. J Virol 83:817–829

    Article  PubMed  CAS  Google Scholar 

  53. Schneider R, Unger G, Stark R, Schneider-Scherzer E, Thiel H-J (1993) Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science 261:1169–1171

    Article  PubMed  CAS  Google Scholar 

  54. Schokker D, Hoekman AJ, Smits MA, Rebel JM (2009) Gene expression patterns associated with chicken jejunal development. Dev Comp Immunol 33:1156–1164

    Article  PubMed  CAS  Google Scholar 

  55. Schweizer M, Mätzener P, Pfaffen G, Stalder H, Peterhans E (2006) “Self” and “nonself” manipulation of interferon defense during persistent infection: bovine viral diarrhea virus resists alpha/beta interferon without blocking antiviral activity against unrelated viruses replicating in its host cells. J Virol 80:6926–6935

    Article  PubMed  CAS  Google Scholar 

  56. Seago J, Hilton L, Reid E, Doceul V, Jeyatheesan J, Moganeradj K, McCauley J, Charleston B, Goodbourn S (2007) The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3. J Gen Virol 88:3002–3006

    Article  PubMed  CAS  Google Scholar 

  57. Seago J, Goodbourn S, Charleston B (2010) The classical swine fever virus Npro product is degraded by cellular proteasomes in a manner that does not require interaction with interferon regulatory factor 3. J Gen Virol 91:721–726

    Article  PubMed  CAS  Google Scholar 

  58. Sjöwall C, Wetterö J, Bengtsson T, Askendal A, Almroth G, Skogh T, Tengvall P (2007) Solid-phase classical complement activation by C-reactive protein (CRP) is inhibited by fluid-phase CRP-C1q interaction. Biochem Biophys Res Commun 352:251–258

    Article  PubMed  Google Scholar 

  59. Sklan EH, Staschke K, Oakes TM, Elazar M, Winters M, Aroeti B, Danieli T, Glenn JS (2007) A Rab-GAP TBC domain protein binds hepatitis C virus NS5A and mediates viral replication. J Virol 81:11096–11105

    Article  PubMed  CAS  Google Scholar 

  60. Song H, Park H, Kim YS, Kim KD, Lee HK, Cho DH, Yang JW, Hur DY (2000) L-kynurenine-induced apoptosis in human NK cells is mediated by reactive oxygen species. Int Immunopharmacol 11:932–938

    Article  Google Scholar 

  61. Stelzer G, Inger A, Olender T, Iny-Stein T, Dalah I, Harel A, Safran M (2009) Lancet D (2009) GeneDecks: paralog hunting and gene-set distillation with GeneCards annotation. OMICS 13:477–487

    Article  PubMed  CAS  Google Scholar 

  62. Van Oirschot JT (1988) Description of the virus infection. In: Liess B (ed) Classical swine fever and related viral infections. Martinus Nijhoff Publishing, Dordrecht, pp 1–25

  63. Van Regenmortel MHV, Fauquet CM, Bishop DHL (2005) Virus taxonomy. In: Classification and nomenclature of viruses, 7th Report of the international committee on taxonomy of viruses. Academic Press, San Diego, CA, pp 867–872

  64. Weesendorp E, Stegeman A, Loeffen W (2009) Dynamics of virus excretion via different routes in pigs experimentally infected with classical swine fever virus strains of high, moderate or low virulence. Vet Microbiol 133:9–22

    Article  PubMed  CAS  Google Scholar 

  65. Weesendorp E, Stegeman A, Loeffen W (2011) Transmission of classical swine fever virus depends on the clinical course of infection which is associated with high and low levels of virus excretion. Vet Microbiol 147:262–273

    Article  PubMed  Google Scholar 

  66. Westhuyzen J, Healy H (2000) Review: biology and relevance of C-reactive protein in cardiovascular and renal disease. Ann Clin Lab Sci 30:133–143

    PubMed  CAS  Google Scholar 

  67. Wu H, Boackle SA, Hanvivadhanakul P, Ulgiati D, Grossman JM, Lee Y, Shen N, Abraham LJ, Mercer TR, Park E, Hebert LA, Rovin BH, Birmingham DJ, Chang DM, Chen CJ, McCurdy D, Badsha HM, Thong BY, Chng HH, Arnett FC, Wallace DJ, Yu CY, Hahn BH, Cantor RM, Tsao BP (2007) Association of a common complement receptor 2 haplotype with increased risk of systemic lupus erythematosus. Proc Natl Acad Sci USA 104:3961–3966

    Article  PubMed  CAS  Google Scholar 

  68. Wu K, Kovacev J, Pan ZQ (2010) Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate. Mol Cell 37:784–796

    Article  PubMed  CAS  Google Scholar 

  69. Xu G, Tan X, Wang H, Sun W, Shi Y, Burlingame S, Gu X, Cao G, Zhang T, Qin J, Yang J (2010) Ubiquitin-specific peptidase 21 inhibits tumor necrosis factor alpha-induced nuclear factor kappaB activation via binding to and deubiquitinating receptor-interacting protein 1. J Biol Chem 285:969–978

    Article  PubMed  CAS  Google Scholar 

  70. Zahurak M, Parmigiani G, Yu W, Scharpf RB, Berman D, Schaeffer E, Shabbeer S, Cope L (2007) Pre-processing agilent microarray data. BMC Bioinform 8:142

    Article  Google Scholar 

  71. Zeng W, Xu M, Liu S, Sun L, Chen ZJ (2009) Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell 36:315–325

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Esther Willems, Yvon Geurts, Bernie Moonen-Leusen, and Sjaak Quak for their technical assistance. This study was financially supported by the Dutch Ministry of Agriculture, Nature and Food Quality (WOT-01-003-010-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Hulst.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulst, M., Loeffen, W. & Weesendorp, E. Pathway analysis in blood cells of pigs infected with classical swine fever virus: comparison of pigs that develop a chronic form of infection or recover. Arch Virol 158, 325–339 (2013). https://doi.org/10.1007/s00705-012-1491-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1491-8

Keywords

Navigation