Skip to main content
Log in

Fast calculations of the spectral diffuse-to-global ratios for approximating spectral irradiance at the street canyon level

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Two radiative transfer models are presented that simplify calculations of street canyon spectral irradiances with minimum data input requirements, allowing better assessment of urban exposures than can be provided by standard unobstructed radiation measurements alone. Fast calculations improve the computational performance of radiation models, when numerous repetitions are required in time and location. The core of the models is the calculation of the spectral diffuse-to-global ratios (DGR) from an unobstructed global spectral measurement. The models are based on, and have been tested against, outcomes of the SMARTS2 algorithm (i.e. Simple Model of the Atmospheric Radiative Transfer of Sunshine). The modelled DGRs can then be used to partition global spectral irradiance values into their direct and diffuse components for different solar zenith angles. Finally, the effects of canyon obstructions can be evaluated independently on the direct and diffuse components, which are then recombined to give the total canyon irradiance. The first model allows ozone and aerosol inputs, while the second provides a further simplification, restricted to average ozone and aerosol contents but specifically designed for faster calculations. To assess the effect of obstructions and validate the calculations, a set of experiments with simulated obstructions (simulated canyons) were performed. The greatest source of uncertainty in the simplified calculations is in the treatment of diffuse radiation. The measurement-model agreement is therefore dependent on the region of the sky obscured and ranges from <5 % at all wavelengths to 20–40 % (wavelength dependent) when diffuse sky only is visible from the canyon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Badarinath KVS, Kharol SK, Kaskaoutis DG, Kambezidis HD (2007) Influence of atmospheric aerosols on solar spectral irradiance in an urban area. J Atmos Solar-Terrestrial Phys 69:589–599. doi:10.1016/j.jastp.2006.10.010

    Article  Google Scholar 

  • Bais A, Blumthaler M, Webb A, et al. (2005) Intercomparison of solar UV direct irradiance spectral measurements at Izana in June 2005. Optics & Photonics 2005. Int Soc Opt Photon. p 588609

  • Benger SN, Zhou S, Guan H (2014) A dynamic solar irradiance model for assessing solar PV power generation potential in urban areas. Green Energy for Sustainable Development (ICUE), 2014 International Conference and Utility Exhibition on. IEEE, pp 1–4

  • Bird RE, Riordan C (1986) Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres. J Clim Appl Meteorol 25:87–97

    Article  Google Scholar 

  • Carrasco-Hernandez R, Smedley AR, Webb AR (2015) Using urban canyon geometries obtained from Google Street View for atmospheric studies: potential applications in the calculation of street level total shortwave irradiances. Energy Build 86:340–348

    Article  Google Scholar 

  • Collaud Coen M, Weingartner E, Schaub D et al (2004) Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis. Atmos Chem Phys 4:2465–2480

    Article  Google Scholar 

  • De Carvalho AM, Sanches L, de Souza NJ, Silva VAM (2013) Effects of sky conditions measured by the clearness index on the estimation of solar radiation using a digital elevation model. Atmos Clim Sci 3:618–626

    Google Scholar 

  • Eeftens M, Beekhuizen J, Beelen R et al (2013) Quantifying urban street configuration for improvements in air pollution models. Atmos Environ 72:1–9. doi:10.1016/j.atmosenv.2013.02.007

    Article  Google Scholar 

  • Grimmond CSB, Potter SK, Zutter HN, Souch C (2001) Rapid methods to estimate sky‐view factors applied to urban areas. Int J Climatol 21:903–913

    Article  Google Scholar 

  • Gueymard C (1995) SMARTS2, simple model ofthe atmospheric radiative transfer of sunshine: algorithms and performance assessment. Florida Solar Energy Center. Florida Solar Energy Center, Cocoa

    Google Scholar 

  • Holmer B, Thorsson S, Eliasson I (2007) Cooling rates, sky view factors and the development of intra-urban air temperature differences. Geogr Ann Ser A, Phys Geogr 89:237–248. doi:10.1111/j.1468-0459.2007.00323.x

    Article  Google Scholar 

  • Hu B, Wang Y (2013) Comparison of multi-empirical estimation models of photosynthetically active radiation under all sky conditions in Northeast China. Theor Appl Climatol 1–11

  • Jaus J, Gueymard CA, Dimroth F, et al. (2012) Generalized spectral performance evaluation of multijunction solar cells using a multicore, parallelized version of SMARTS. AIP Conf Proc-Am Inst Phys. p 122

  • Kaskaoutis DG, Kambezidis HD, Tóth Z (2007) Investigation about the dependence of spectral diffuse-to-direct-beam irradiance ratio on atmospheric turbidity and solar zenith angle. Theor Appl Climatol 89:245–256

    Article  Google Scholar 

  • Kaskaoutis DG, Kambezidis HD, Kumar Kharol S, Badarinath KVS (2008) The diffuse-to-global spectral irradiance ratio as a cloud-screening technique for radiometric data. J Atmos Solar-Terrestrial Phys 70:1597–1606. doi:10.1016/j.jastp.2008.04.013

    Article  Google Scholar 

  • Krayenhoff ES, Christen A, Martilli A, Oke TR (2014) A multi-layer radiation model for urban neighbourhoods with trees. Boundary-Layer Meteorol 151:139–178

    Article  Google Scholar 

  • Kreuter A, Blumthaler M (2009) Stray light correction for solar measurements using array spectrometers. Rev Sci Instrum 80:96108

    Article  Google Scholar 

  • Kreuter A, Buras R, Mayer B et al (2014) Solar irradiance in the heterogeneous albedo environment of the Arctic coast: measurements and a 3-D-model study. Atmos Chem Phys Discuss 14:3499–3536

    Article  Google Scholar 

  • Leckner B (1978) The spectral distribution of solar radiation at the earth’s surface—elements of a model. Sol Energy 20:143–150

    Article  Google Scholar 

  • Lindberg F, Grimmond C (2011) The influence of vegetation and building morphology on shadow patterns and mean radiant temperatures in urban areas: model development and evaluation. Theor Appl Climatol 105:311–323. doi:10.1007/s00704-010-0382-8

    Article  Google Scholar 

  • Ludema C, Cole SR, Poole C et al (2014) Association between unprotected ultraviolet radiation exposure and recurrence of ocular herpes simplex virus. Am J Epidemiol 179:208–215

    Article  Google Scholar 

  • Malinovic-Milicevic S, Mihailovic DT, Radovanovic MM (2014) Reconstruction of the erythemal UV radiation data in Novi Sad (Serbia) using the NEOPLANTA parametric model. Theor Appl Climatol 1–8

  • Matzarakis A, Matuschek O (2011) Sky view factor as a parameter in applied climatology—rapid estimation by the SkyHelios model. Meteorol Z 20(1):39–45

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131. doi:10.1007/s00484-009-0261-0

    Article  Google Scholar 

  • Mayer B, Hoch SW, Whiteman CD (2010) Validating the MYSTIC three-dimensional radiative transfer model with observations from the complex topography of Arizona’s Meteor Crater. Atmos Chem Phys 10:8685–8696

    Article  Google Scholar 

  • Molina LT, Molina MJ (1986) Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range. J Geophys Res Atmos 91:14501–14508. doi:10.1029/JD091iD13p14501

    Article  Google Scholar 

  • Myers D (1997) Radiometric instrumentation and measurements guide for photovoltaic performance testing. National Renewable Energy Laboratory, Golden, Colorado 80401–3393, USA

  • Myers DR, Gueymard CA (2004) Description and availability of the SMARTS spectral model for photovoltaic applications. In Optical Science and Technology, the SPIE 49th Annual Meeting. International Society for Optics and Photonics. pp. 56–67

  • NASA LAADS (2013) MOD04_L2 - Level Aerosol. MOD04_L2.A2013158.1105.051.2013158202400.hdf. In: 51 - MODIS Collect. 5.1 - Sel. Atmos L. Prod. http://ladsweb.nascom.nasa.gov/data/search.html. Accessed 29 Jul 2014

  • Nofuentes G, García-Domingo B, Muñoz JV, Chenlo F (2014) Analysis of the dependence of the spectral factor of some PV technologies on the solar spectrum distribution. Appl Energy 113:302–309

    Article  Google Scholar 

  • Petersen S, Momme AJ, Hviid CA (2014) A simple tool to evaluate the effect of the urban canyon on daylight level and energy demand in the early stages of building design. Sol Energy 108:61–68

    Article  Google Scholar 

  • Redemann J, Russell PB, Hamill P (2001) Dependence of aerosol light absorption and single scattering albedo on ambient relative humidity for sulfate aerosols with black carbon cores. J Geophys Res Atmos 106:27485–27495

    Article  Google Scholar 

  • Remer LA, Kaufman YJ, Tanré D et al (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973. doi:10.1175/JAS3385.1

    Article  Google Scholar 

  • Robinson D, Stone A (2005) A simplified radiosity algorithm for general urban radiation exchange. Build Serv Eng Res Technol 26:271–284

    Article  Google Scholar 

  • Ruiz-Arias JA, Pozo-Vázquez D, Lara-Fanego V et al (2011) A high-resolution topographic correction method for clear-sky solar irradiance derived with a numerical weather prediction model. J Appl Meteorol Climatol 50:2460–2472

    Article  Google Scholar 

  • Serrano M-A, Boscà JV (2011) Validation of a method to estimate direct normal irradiance of UVA and PAR bands from global horizontal measurements for cloudless sky conditions in Valencia, Spain, by a measurement campaign. Theor Appl Climatol 103:95–101

    Article  Google Scholar 

  • Smedley A, Webb A, Rimmer J (2010) Baseline measurement and analysis of UK ozone and UV. Weather 65:254

    Article  Google Scholar 

  • Unger J (2009) Connection between urban heat island and sky view factor approximated by a software tool on a 3D urban database. Int J Environ Pollut 36:59–80. doi:10.1504/IJEP.2009.021817

    Article  Google Scholar 

  • Vernez D, Milon A, Vuilleumier L, Bulliard JL, Koechlin A, Boniol M, Doré JF (2015) A general model to predict individual exposure to solar UV by using ambient irradiance data. J Expo Sci Environ Epidemiol 25(1):113–118

    Article  Google Scholar 

  • Wagner JE, Angelini F, Blumthaler M et al (2011) Investigation of the 3-D actinic flux field in mountainous terrain. Atmos Res 102:300–310

    Article  Google Scholar 

  • Webb AR (2006) Who, what, where and when—influences on cutaneous vitamin D synthesis. Prog Biophys Mol Biol 92:17–25

    Article  Google Scholar 

  • Weihs P, Wagner JE, Schreier SF et al (2012) The influence of the spatial resolution of topographic input data on the accuracy of 3-D UV actinic flux and irradiance calculations. Atmos Chem Phys 12:2297–2312

    Article  Google Scholar 

  • Yam JCS, Kwok AKH (2014) Ultraviolet light and ocular diseases. Int Ophthalmol 34:383–400

    Article  Google Scholar 

  • Zhu S, Guan H, Bennett J et al (2013) Influence of sky temperature distribution on sky view factor and its applications in urban heat island. Int J Climatol 33:1837–1843. doi:10.1002/joc.3660

    Article  Google Scholar 

Download references

Acknowledgments

This work was generously funded by the Mexican Council for Science and Technology (CONACyT) (grant reference: 214428). We thank Dr Richard Kift from the Centre for Atmospheric Sciences, University of Manchester for his help in obtaining the global spectral measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Carrasco-Hernandez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrasco-Hernandez, R., Smedley, A.R.D. & Webb, A.R. Fast calculations of the spectral diffuse-to-global ratios for approximating spectral irradiance at the street canyon level. Theor Appl Climatol 124, 1065–1077 (2016). https://doi.org/10.1007/s00704-015-1473-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1473-3

Keywords

Navigation