Skip to main content

Advertisement

Log in

Noise Pollution and Urban Planning

  • Noise Pollution (P Zannin, Section Editor)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Noise pollution distribution in each city around the world is necessarily influenced by its own design. A lot of factor associated to urban planning have a considerable effect on volume of traffic, vehicles distribution, traffic conditions, etc. And it is know that, from a temporal and spatial point of view, the most important source of noise in cities is road traffic. For that, good relationships between urban planning and different factors such as urban density, urban morphology, urban land use, street distribution, street environment and green spaces are being founded. In this way, the fact of finding a sustainable city could be closer, at least with respect to noise pollution. A good knowledge of these relationships would allow better prediction, analysis and prevention of such pollution through an effective design of urban environments. However, although in the first decade of XXI century these relationships were treated in some works, only some aspects of these problems were considered, essentially focused on street functionality. In the last years, this topic has reached more important development and more studies focused on the analysis of the relationships between the distributions of pollution and urbanism. This work makes a revision of spatial sampling methodologies for noise pollution assessment in relation with urban planning and a review of studies that have analysed the relationships between urban noise and different specifics aspects of urban design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. The World Bank, Urban population (% of total). The United Nations Population Division’s. 2017. https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS. Accessed 19 Jan 2018. 2015.

  2. Buss R. United Nations Conference on the Human Environment (UNCHE). June 5 to June 16, 1972. Stockholm, Sweden: United Nations, 2007.

  3. WHO (World Health Organization). Burden of disease from environmental noise. Bonn: WHO and JRC; 2011.

    Google Scholar 

  4. WHO (World Health Organization). El Ruido. Criterios de salud ambiental. Ginebra: 454 OPS/WHO; 1983.

    Google Scholar 

  5. WHO (World Health Organization). Guidelines for community noise. Geneva: WHO; 1999.

    Google Scholar 

  6. WHO (World Health Organization). Environmental health indicators for Europe. A pilot indicator-based report. Denmark: WHO Regional Office for Europe; 2004.

    Google Scholar 

  7. WHO (World Health Organization). Night noise guidelines for Europe. Copenhagen: WHO Regional Office for Europe; 2009.

    Google Scholar 

  8. Brown AL, van Kamp I. WHO environmental noise guidelines for the European region: a systematic review of transport noise interventions and their impacts on health. Int J Environ Res Public Health. 2017;14(8):873.

    Article  Google Scholar 

  9. Wothge J, Belke C, Möhler U, Guski R, Schreckenberg D. The combined effects of aircraft and road traffic noise and aircraft and railway noise on noise annoyance—an analysis in the context of the joint research initiative NORAH. Int J Environ Res Public Health. 2017;14(8):871.

    Article  Google Scholar 

  10. Singh D, Kumari N, Sharma P. A review of adverse effects of road traffic noise on human health. Fluctuation Noise Lett. 2018;17:1830001. (12 pages)

    Article  Google Scholar 

  11. Munzel T, Gori T, Babisch W, Basner M. Cardiovascular effects of environmental noise exposure. Eur Heart J. 2014;35(13):829–83.

    Article  Google Scholar 

  12. Sørensen M, Hvidberg M, Andersen ZJ, Nordsborg RB, Lillelund KG, Jakobsen J, et al. Noise exposure enhances auditory cortex responses related to hyperacusis behavior. Brain Res. 2012;1485:108–16.

    Article  CAS  Google Scholar 

  13. El Aarbaoui T, Méline J, Brondeel R, Chaix B. Short-term association between personal exposure to noise and heart rate variability: the RECORD MultiSensor study. Environ Pollut. 2017;231:703–11.

    Article  CAS  Google Scholar 

  14. Azuma K, Uchiyama I. Association between environmental noise and subjective symptoms related to cardiovascular diseases among elderly individuals in Japan. PLoS One. 2017;12(11):e0188236.

    Article  Google Scholar 

  15. Konkle ATM, Keith SE, McNamee JP, Michaud D. Chronic noise exposure in the spontaneously hypertensive rat. Noise Health. 2017;19(90):213–21.

    Article  Google Scholar 

  16. Demian H. Environmental noise and sleep disturbances: a threat to health? Sleep Sci. 2014;7:209–12.

    Article  Google Scholar 

  17. Evandt J, Oftedal B, Krog NH, Skurtveit S, Nafstad P, Schwarze PE, et al. Road traffic noise and registry based use of sleep medication. Environ Health. 2017;16:110.

    Article  Google Scholar 

  18. Bistrup ML, Babisch W, Stansfeld S, Sulkowski W. PINCHE’s policy recommendations on noise: how to prevent noise from adversely affecting children. Acta Paediatr. 2006;95:31–5.

    Article  Google Scholar 

  19. Skrzypek M, Kowalska M, Czech EM, Niewiadomska E, Zejda JE. Impact of road traffic noise on sleep disturbances and attention disorders amongst school children living in upper Silesian Industrial Zone, Poland. Int J Occup Med Environ Health. 2017;30:511–20.

    Google Scholar 

  20. Sygna K, Aasvang GM, Aamodt G, Oftedal B, Krog NH. Road traffic noise, sleep and mental health. Environ Res. 2014;131:17–24.

    Article  CAS  Google Scholar 

  21. Dzhambov A, Tilov B, Markevych I, Dimitrova D. Residential road traffic noise and general mental health in youth: the role of noise annoyance, neighborhood restorative quality, physical activity, and social cohesion as potential mediators. Environ Int. 2017;109:1–9.

    Article  Google Scholar 

  22. Sun W, Deng A, Jayaram A, Gibson B. Noise exposure enhances auditory cortex responses related to hyperacusis behavior. Brain Res. 2012;1485:108–16.

    Article  CAS  Google Scholar 

  23. Moller AR. Tinnitus: presence and future. Prog Brain Res. 2007;166:3–16.

    Article  CAS  Google Scholar 

  24. Cheng L, Wang S, Huang Y, Liao X. The hippocampus may be more susceptible to environmental noise than the auditory cortex. Hear Res. 2016;333:93–7.

    Article  Google Scholar 

  25. Christensen JP, Raaschou-Nielsen O, Tjønneland A, Nordsborg RB, Jensen SS, Sørensen TIA, et al. Long-term exposure to residential traffic noise and changes in body weight and waist circumference: a cohort study. Environ Res. 2015;143:154–61.

    Article  CAS  Google Scholar 

  26. European Commission. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise (END). Official Journal L 189 12–26, European Parliament and the Council of the European Union, Brussels, Belgium, 2002.

  27. FHWA-PD-96-046. Measurement of highway-related noise. US Department of Transportation, Research and Special Programs Administration, Washington, D.C., 1996.

  28. CFR (Code of Federal Regulation) 23 Part 772. Procedures for abatement of highway traffic noise and construction noise. Fed Regist, 75–133. Washington, D.C, 2010.

  29. Rey Gozalo G, Barrigón Morillas JM. Analysis of sampling methodologies for noise pollution assessment and the impact on the population. Int J Environ Res Public Health. 2016;13(5):490.

    Article  Google Scholar 

  30. Bunn F, Zannin PHT. Assessment of railway noise in an urban setting. Appl Acoust. 2016;104:16–23.

    Article  Google Scholar 

  31. ISO 9613-1:1993. Acoustics—attenuation of sound during propagation outdoors—part 1: calculation of the absorption of sound by the atmosphere. International Organization for Standardization (ISO), Geneva, Switzerland (1993).

  32. ISO 9613-2:1996. Acoustics—attenuation of sound during propagation outdoors—part 2: general method of calculation. International Organization for Standardization (ISO), Geneva, Switzerland 1993.

  33. Prieto Gajardo C, Godinho L, Amado-Mendes P, Barrigon Morillas JM. Numerical analysis of acoustic barriers with a diffusive surface using a 2.5D boundary element model. J Comput Acoust 2015 09/01; 2018/02;23(03):1550009.

  34. Chai YB, Li W, Gong ZX, Li TY. Hybrid smoothed finite element method for two dimensional acoustic radiation problems. Appl Acoust. 2016;103:90–101.

    Article  Google Scholar 

  35. ISO 1996-1:2016. Description, measurement and assessment of environmental noise. Part 1: basis quantities and assessment procedures. Geneva: International Organization for Standardization; 2016.

    Google Scholar 

  36. ISO 1996-2:2017. Description, measurement and assessment of environmental noise. Part 2: determination of environmental noise levels. Geneva: International Organization for Standardization; 2017.

    Google Scholar 

  37. ANSI S12.18. Procedures for outdoor measurement of sound pressure level. New York: Acoustical Society of America; 1994.

    Google Scholar 

  38. ANSI S12.9-1. Quantities and procedures for description and measurement of environmental sound—part 1: basic quantities and definitions. New York: Acoustical Society of America; 2013.

    Google Scholar 

  39. ANSI S12.9-2. Quantities and procedures for description and measurement of environmental sound—part 2: measurement of long-term, wide-are sound. New York: Acoustical Society of America; 1992.

    Google Scholar 

  40. ANSI S12.9-3. Quantities and procedures for description and measurement of environmental sound—part 3: short-term measurements with an observer present. New York, Acoustical Society of America; 1993.

  41. Barrigón Morillas JM, Montes González D, Rey Gozalo G. A review of the measurement procedure of the ISO 1996 standard. Relationship with the European Noise Directive. Sci Total Environ. 2016;565:595–606.

    Article  CAS  Google Scholar 

  42. Mateus M, Dias Carrilho J, Gameiro Da Silva M. An experimental analysis of the correction factors adopted on environmental noise measurements performed with window-mounted microphones. Appl Acoust. 2015;87:212–8.

    Article  Google Scholar 

  43. Montes González D, Barrigón Morillas JM, Rey Gozalo G. The influence of microphone location on the results of urban noise measurements. Appl Acoust. 2015;90:64–73.

    Article  Google Scholar 

  44. Jagniatinskis A, Fiks B. Assessment of environmental noise from long-term window microphone measurements. Appl Acoust. 2014;76:377–85.

    Article  Google Scholar 

  45. Montes González D, Barrigón Morillas JM, Godinho L, Amado-Mendes P. Acoustic screening effect on building façades due to parking lines in urban environments. Effects in noise mapping. Appl Acoust. 2018;130:1–14.

    Article  Google Scholar 

  46. ISO 1996–2:2007. Description, measurement and assessment of environmental noise. Part 2: determination of environmental noise levels. Geneva: International Organization for Standardization; 2007.

    Google Scholar 

  47. Xia-lin MA, Ming CAI. Rendering of dynamic road traffic noise map based on Paramics. Procedia Soc Behav Sci. 2013;96:1460–8.

    Article  Google Scholar 

  48. Seong JC, Park TH, Ko JH, Chang SI, Kim M, Holt JB, et al. Modeling of road traffic noise and estimated human exposure in Fulton County, Georgia, USA. Environ Int. 2011;37:1336–41.

    Article  Google Scholar 

  49. Arana M, San Martín R, Nagore I, Pérez D. What precision in the digital terrain model is required for noise mapping? Appl Acoust. 2011;72:522–6.

    Article  Google Scholar 

  50. Guedes ICM, Bertoli SR, Zannin PHT. Influence of urban shapes on environmental noise: a case study in Aracaju—Brazil. Sci Total Environ. 2011;412-413:66–76.

    Article  CAS  Google Scholar 

  51. WG-AEN (Working Group Assessment of Exposure to Noise). Good practice guide for strategic noise mapping and the production associated data on noise exposure. WG-AEN, Position Paper 2. European Commission, Bruselas, 2007.

  52. Kephalopoulos S, Paviotti M, Anfosso-Lèdèe F, Van Maercke D, Shilton S, Jones N. Advances in the development of common noise assessment methods in Europe: the CNOSSOS-EU framework for strategic environmental noise mapping. Sci Total Environ. 2014;482–483:400–10.

    Article  CAS  Google Scholar 

  53. Wetzel E, Krapf K-G. Basic requirements to establish HARMONOISE as the Common European computation method. Proceeding of 36th international congress and exhibition on noise control engineering. Inter-Noise 2007 (Istanbul) 7:4784–4787.

  54. European Commission. Commission Directive (EU) 2015/996 of 19 May 2015 establishing common noise assessment methods according to Directive 2002/49/EC of the European Parliament and of the Council. Official Journal L 168 1–823, European Parliament and the Council of the European Union, Brussels, Belgium, 2015.

  55. Brown AL, Lam KC. Urban noise surveys. Appl Acoust. 1987;20:23–39.

    Article  Google Scholar 

  56. Zannin PH, Diniz FB, Calixto A, Barbosa WA. Environmental noise pollution in residential areas of the city of Curitiba. Acustica-Acta Acustica. 2001;87:625–8.

    Google Scholar 

  57. Sommerhoff J, Recuero M, Suárez E. Community noise survey of the city of Valdivia, Chile. Appl Acoust. 2004;65:643–56.

    Article  Google Scholar 

  58. Martín MA, Tarrero AI, González J, Machimbarrena M. Exposure–effect relationships between road traffic noise annoyance and noise cost valuations in Valladolid, Spain. Appl Acoust. 2006;67:945–58.

    Article  Google Scholar 

  59. Gómez Escobar V, Barrigón Morillas JM, Rey Gozalo G, Vílchez-Gómez R, Carmona del Río J, Méndez Sierra JA. Analysis of the grid sampling method for noise mapping. Archives of Acoustics. 2012;37:499–514.

    Article  Google Scholar 

  60. Attenborough K, Clark S. Background noise levels in the United Kingdom. J Sound Vib. 1976;48:359–75.

    Article  Google Scholar 

  61. Romeu J, Jiménez S, Genescá M, Capdevila R. Spatial sampling for night levels estimation in urban environments. J Acoust Soc Am. 2006;120:791–800.

    Article  CAS  Google Scholar 

  62. Murphy E, King EA. Scenario analysis and noise action planning: modelling the impact of mitigation measures on population exposure. Appl Acoust. 2011;72:487–94.

    Article  Google Scholar 

  63. Barrigón Morillas JM, Gómez Escobar V, Méndez Sierra JA, Vílchez-Gómez R. Study of noise in a small Spanish town. Int J Acoust Vib. 2002;7(4):1–7.

    Google Scholar 

  64. Calixto A, Diniz FB, Zannin PHT. The statistical modeling of road traffic noise in an urban setting. Cities. 2003;20:23–9.

    Article  Google Scholar 

  65. Purkis HJ. Transport noise and town planning. J Sound Vib. 1964;1(3):323–34.

    Article  Google Scholar 

  66. Sánchez JI, González J. Estrategia de medida del ruido de tráfico por criterios urbanísticos. Revista Española de Acústica. 1992;23:13–8.

    Google Scholar 

  67. Barrigón JM, Gómez V, Gutiérrez PD, Alejandre L, Casillas M, Ahmed J. Estudio preliminar del ruido ambiental en la ciudad de Cáceres. In: Calvo-Manzano Ruiz A, Santiago Páez JS, editors. XXX JornadasNacionales de Acústica, TecniAcústica 1999 Ávila. Madrid: Sociedad Española de Acústica, 1999.

  68. Barrigón Morillas JM, Gómez Escobar V, Méndez Sierra JA, Vílchez-Gómez R, Trujillo Carmona J. An environmental noise study in the city of Cáceres, Spain. Appl Acoust. 2002;63:1061–70.

    Article  Google Scholar 

  69. Barrigón Morillas JM, Gómez Escobar V, Méndez Sierra JA, Vílchez-Gómez R, Vaquero JM, Trujillo Carmona J. A categorization method applied to the study of urban road traffic noise. J Acoust Soc Am. 2005a;116:2844–52.

    Article  Google Scholar 

  70. Barrigón Morillas JM, Gómez Escobar V, Méndez Sierra JA, Vílchez-Gómez R, Vaquero JM. Measurements of noise pollution in Badajoz City, Spain. Acta Acustica United with Acustica. 2005b;91:797–801.

    Google Scholar 

  71. Moraes E, Simón F, Guimarães L, Moreno A. Modelling the urban noise of the city of Belém (Brasil). In: Calvo-Manzano A, Pérez-López A, Santiago JS, editors. 19th International Congress on Acoustics, Madrid: Sociedad Española de Acústica, 2007.

  72. Jiménez S, Genescà M, Romeu J, Sanchez A. Estimation of night traffic noise levels. Acta Acustica United with Acústica. 2008;94:563–7.

    Article  Google Scholar 

  73. Ausejo M, Recuero M, Asensio C, Pavón I. Reduction in calculated uncertainty of a noise map by improving the traffic model data through two phases. Acta Acust United Ac. 2011;97:761–8.

    Article  Google Scholar 

  74. Rey Gozalo, G. Análisis y evaluación de un método de muestreo para la realización de mapas de ruido: El Método de Categorización. Ph.D. Thesis. Universidad de Extremadura, Cáceres, Spain, 2012.

  75. Prieto Gajardo, C. Análisis de medidas anuales de niveles sonoros urbanos. Estudio de la capacidad predictiva de medidas de corta duración. Ph.D. Thesis. Universidad de Extremadura, Cáceres, Spain, 2015.

  76. Montes González, D. Estudio de la influencia de los diferentes elementos y características del entorno urbano en la aplicación de la norma ISO 1996 para la obtención de mapas de ruido. Ph.D. Thesis. Universidad de Extremadura, Cáceres, Spain, 2017.

  77. Barrigón Morillas JM, Gómez Escobar V, Rey Gozalo G, Vílchez-Gómez R. Possible relation of noise levels in streets to the population of the municipalities in which they are located. J Acoust Soc Am. 2010;128:EL86–92.

    Article  Google Scholar 

  78. Carmona del Río FJ, Gómez Escobar V, Trujillo Carmona J, Vílchez-Gómez R, Méndez Sierra JA, Rey Gozalo G, et al. Application of a street categorization method to the study of urban noise: the Valladolid (Spain) study. Environ Eng Sci. 2011;28:811–7.

    Article  CAS  Google Scholar 

  79. Rey Gozalo G, Barrigón Morillas JM, Gómez Escobar V. Analysis of noise exposure in two small towns. Acta Acustica united with Acustica. 2012;98:884–93.

    Article  Google Scholar 

  80. Rey Gozalo G, Barrigón Morillas JM, Gómez Escobar V. Urban streets functionality as a tool for urban pollution management. Sci Total Environ. 2013a;461–462:453–61.

    Article  CAS  Google Scholar 

  81. Rey Gozalo G, Barrigón Morillas JM, Gómez Escobar V, Vílchez-Gómez R, Méndez Sierra JA, Carmona del Río FJ, et al. Study of the categorisation method using long-term measurements. Archives of Acoustics. 2013b;38:397–405.

    Article  Google Scholar 

  82. Rey Gozalo G, Barrigón Morillas JM, Gómez Escobar V. Analyzing nocturnal noise stratification. Sci Total Environ. 2014;479-480:39–47.

    Article  CAS  Google Scholar 

  83. Rey Gozalo G, Barrigón Morillas JM, Prieto Gajardo C. Urban noise functional stratification for estimating average annual sound level. J Acoust Soc Am. 2015;137:3198–208.

    Article  Google Scholar 

  84. Can A, Van Renterghem T, Rademaker M, Dauwe S, Thomas P, De Baets B, et al. Sampling approaches to predict urban street noise levels using fixed and temporary microphones. J Environ Monit. 2011;13:2710–9.

    Article  CAS  Google Scholar 

  85. Prieto Gajardo C, Barrigón Morillas JM. Stabilisation patterns of hourly urban sound levels. Environ Monit Assess. 2014;187:1–16.

    Google Scholar 

  86. Chakrabarty D, Santra SC, Mukherjee A, Roy B, Das P. Status of road traffic noise in Calcutta metropolis, India. J Acoust Soc Am. 1997;101:943–9.

    Article  Google Scholar 

  87. To WM, Ip RCW, Lam GCK, Yau CTH. A multiple regression model for urban traffic noise in Hong Kong. J Acoust Soc Am. 2012;112:551–6.

    Google Scholar 

  88. Stępień B. Bootstrap confidence intervals for noise indicators. Acta Acustica United with Acustica. 2016;102:389–97.

    Article  Google Scholar 

  89. Geraghty D, O’Mahony M. Investigating the temporal variability of noise in an urban environment. Int J Sustain Built Environ. 2016;5:34–45.

    Article  Google Scholar 

  90. Quintero G, Balastegui A, Romeu J. Annual traffic noise levels estimation based on temporal stratification. J Environ Manag. 2018;206:1–9.

    Article  CAS  Google Scholar 

  91. Romeu J, Genescà T, Pàmies T, Jiménez S. Street categorization for the estimation of day levels using short-term measurements. Appl Acoust. 2011;72:569–77.

    Article  Google Scholar 

  92. Germán González, M. Análisis del ambiente sonoro y de la reacción humana al ruido en espacios urbanos de la Ciudad de México. Ph.D. Thesis. Universidad Nacional Autónoma de México, México, 2009.

  93. Suárez E, Barros JL, Báez A, Stevens J, Romero R, Álvarez J, González C, Rey Gozalo G. Mapa de ruido de la comuna de Santiago de Chile mediante modelación. Proceedings of Internacional Symposium of Acoustics, INGEACUS, Valdivia, 2011.

  94. Ko JH, Chang SI, Lee BC. Noise impact assessment by utilizing noise map and GIS: a case study in the city of Chungju, Republic of Korea. Appl Acoust. 2011;72:544–50.

    Article  Google Scholar 

  95. Dintrans A, Préndez M. A method of assessing measures to reduce road traffic noise: a case study in Santiago, Chile. Appl Acoust. 2013;74:1486–91.

    Article  Google Scholar 

  96. Suárez E, Barros JL. Traffic noise mapping of the city of Santiago de Chile. Sci Total Environ. 2014;466-467:539–46.

    Article  CAS  Google Scholar 

  97. Morley D, Gulliveer J. Methods to improve traffic flow and noise exposure estimation on minor roads. Environ Pollut. 2016;216:746–54.

    Article  CAS  Google Scholar 

  98. Bastián-Monarca NA, Suárez E, Arenas JP. Assessment of methods for simplified traffic noise mapping of small cities: casework of the city of Valdivia, Chile. Sci Total Environ. 2016;550:439–48.

    Article  CAS  Google Scholar 

  99. Xie Y, Gong J, Sun P, Gou X, Xie Y. Impacts of major vehicular roads on urban landscape and urban growth in an arid region: a case study of Jiuquan city in Gansu Province, China. J Arid Environ. 2016;127:235–44.

    Article  Google Scholar 

  100. Barrigón Morillas JM, Gómez Escobar V, Méndez Sierra JA, Vílchez-Gómez R, Carmona del Río FJ, Trujillo Carmona J. Analysis of the prediction capacity of a categorization method for urban noise assessment. Appl Acoust. 2011;72:760–71.

    Article  Google Scholar 

  101. Zambon G, Benocci R, Brambilla G. Cluster categorization of urban roads to optimize their noise monitoring. Environ Monit Assess. 2016;188:1–11.

    Article  Google Scholar 

  102. Ministerio de Transporte y Telecomunicaciones (MTT). Subsecretaría de Transporte. Secretaría Regional Ministerial VII Región del Maule. In Resolución 221 Exenta. Determina Red Vial Básica de la Comuna de Talca; Ministerio de Transporte y Telecomunicaciones: Talca, Chile, 1997.

  103. Doygun H, Kusat Gurun D. Analysing and mapping spatial and temporal dynamics of urban traffic noise pollution: a case study in Kahramanmaraş, Turkey. Environ Monit Assess. 2008;142:65–72.

    Article  Google Scholar 

  104. Galloway WJ, Eldred KMcK, Simpson MA. Population distribution of the United States as a function of outdoor noise level. EPA Report No. 550/9–74-009, U.S. Environmental Protection Agency, Washington, DC, 1974.

  105. Stewart CM, Russel WA, Luz GA. Can population density be used to determine ambient noise levels? 137th Meeting ASA, Forum Acusticum, Berlin, Germany, 1999.

  106. Crocker MJ. Noise and vibration of positive displacement compressors—a review. 14th International Congress on Sound and Vibration 2007, ICSV 2007; 2007.

  107. Abhishek K, Bhangale UD, Mondal P, Vijay P, Tyagi D. Managing road transport noise through control of tire-road noise: an Indian scenario. SAE Techni Paper 2012.

  108. Tang UW, Wang ZS. Influences of urban forms on traffic-induced noise and air pollution. Results from a modelling system. Environ Model Softw. 2007;22:1750–64.

    Article  Google Scholar 

  109. Wang B, Kang J. Effects of urban morphology on the traffic noise distribution through noise mapping: a comparative study between UK and China. Appl Acoust. 2011;72:556–68.

    Article  Google Scholar 

  110. Torija AJ, Genaro N, Ruiz DP, Ramos-Ridao A, Zamorano M, Requena I. Priorization of acoustic variables: environmental decision support for the physical characterization of urban sound environments. Build Environ. 2010;45:1477–89.

    Article  Google Scholar 

  111. Rey Gozalo G, Barrigón Morillas JM, Trujillo Carmona J, Montes González D, Atanasio Moraga P, Gómez Escobar V, et al. Study on the relation between urban planning and noise level. Appl Acoust. 2016;111:143–7.

    Article  Google Scholar 

  112. Salomons EM, Pont MB. Urban traffic noise and the relation to urban density, form, and traffic elasticity. Landsc Urban Plan. 2012;108:2–16.

    Article  Google Scholar 

  113. Azkorra Z, Pérez G, Coma J, Cabeza LF, Bures S, Álvaro JE, et al. M. Evaluation of green walls as a passive acoustic insulation system for buildings. Appl Acoust. 2015;89:46–56.

    Article  Google Scholar 

  114. Hammad AWA, Akbarnezhad A, Rey D. Sustainable urban facility location: Minimising noise pollution and network congestion. Transp Res E. 2017;107:38–59.

    Article  Google Scholar 

  115. Ryu H, Park IK, Chun BS, Chang S II. Spatial statistical analysis of the effects of urban form indicators on road-traffic noise exposure of a city in South Korea. Appl Acoust. 2017;115:93–100.

    Article  Google Scholar 

  116. Margaritis E, Kang J. Relationship between urban green spaces and other features of urban morphology with traffic noise distribution. Urban For Urban Green. 2016;15:174–85.

    Article  Google Scholar 

  117. Margaritis E, Kang J. Relationship between green space-related morphology and noise pollution. Ecol Indic. 2017;72:921–33.

    Article  Google Scholar 

  118. Mazaris AD, Kallimanis AS, Chatzigianidis G, Papadimitriou K, Pantis JD. Spatiotemporal analysis of an acoustic environment: interactions between landscape features and sounds. Landsc Ecol. 2009;24:817–31.

    Article  Google Scholar 

  119. Liu J, Kang J, Luo T, Behm H, Coppack T. Spatiotemporal variability of soundscapes in a multiple functional urban area. Landsc Urban Plan. 2013;115:1–9.

    Article  Google Scholar 

  120. Hong JY, Jeon JY. Exploring spatial relationships among soundscape variables in urban areas: a spatial statistical modelling approach. Landsc Urban Plan. 2017;157:352–64.

    Article  Google Scholar 

Download references

Funding

The authors wish to thank the funded project TRA2015-70487-R (MINECO/FEDER, UE) and the Government of Extremadura, the Regional Ministry of Economy, Trade and Innovation (GR10175), the European Social Fund and the European Regional Development Fund (ERDF). This work was also partially supported by the Chilean National Commission for Scientific and Technological Research (CONICYT) through the project FONDECYT No. 1180547. G. Rey Gozalo was supported by Juan de la Cierva—Incorporación contract from the Spanish Ministry of Economy, Industry and Competitiveness (IJCI-2016-28923).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Miguel Barrigón Morillas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of the Topical Collection on Noise Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morillas, J.M.B., Gozalo, G.R., González, D.M. et al. Noise Pollution and Urban Planning. Curr Pollution Rep 4, 208–219 (2018). https://doi.org/10.1007/s40726-018-0095-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-018-0095-7

Keywords

Navigation