Skip to main content

Advertisement

Log in

The increase in September precipitation in the Mediterranean region as a result of changes in atmospheric circulation

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

The study analyzes changes in September precipitation in the Mediterranean region and their possible causes. The research period is 1950–2014. The main finding is that the reduction in aerosol pollution over Europe in the late twentieth century has led to an upward shift of air temperatures in the region, which in turn has reduced the meridional temperature gradient, leading to weakening and shift to the north of the Azores High (the north end of Hadley circulation). This northward shift placed the Mediterranean region in an area with decreasing SLP, which results in an increase in the number or intensity of cyclones, increase in cloudiness and precipitation and a decrease in air temperatures. In the period 1995–2014 the region (especially its eastern part) lies within the boundaries of Inter Tropical Convergence Zone in September.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Archer C, Caldeira K (2008) Historical trends in the jet streams. Geophys Res Lett 35:L08803. doi:10.1029/2008GL033614

    Google Scholar 

  • Blade I, Liebmann B, Fortuny D, van Oldenborgh G (2012) Observed and simulated impacts of the summer NAO in Europe: implications for projected drying in the Mediterranean region. Clim Dynam 39(3–4):709–727. doi:10.1007/s00382-011-1195-x

    Article  Google Scholar 

  • Boe J, Terray L, Cassou C, Najac J (2009) Uncertainties in European summer precipitation changes: role of large scale circulation. Clim Dynam 33:265–276. doi:10.1007/s00382-008-0474-7

    Article  Google Scholar 

  • Brönnimann S, Stickler A, Griesser T, Fischer A, Grant A, Ewen T, Zhou T, Schraner M, Rozanov E, Peter T (2009) Variability of large-scale atmospheric circulation indices for the Northern Hemisphere during the past 100 years. Meteorol Z 18(4):379–396

    Article  Google Scholar 

  • Chen M, Xie P, Janowiak J, Arkin P (2002) Global land precipitation: a 50-year monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Diodato N, Bellocchi G (2010) Storminess and environmental changes in the Mediterranean central area. Earth Interact 14(5):1–16

    Article  Google Scholar 

  • Dong B, Sutton R, Woollings T (2011) Changes of interannual NAO variability in response to greenhouse gases forcing. Clim Dynam 37:1621–1641. doi:10.1007/s00382-010-0936-6

    Article  Google Scholar 

  • Drenovski I, Stoyanov K (2009) Increase of September precipitation in Bulgaria during the period 1992–2008. Probl Geogr 1:27–35 (in Bulgarian)

    Google Scholar 

  • Drenovski I, Stoyanov K (2010) Changes in the precipitation regime in Bulgaria in the recent years. In: Proceedings of the International Conference “Geography and regional development”, NIGGG, BAS, Sofia, pp 238–242. (in Bulgarian)

  • Dünkeloh A, Jacobeit J (2003) Circulation dynamics of Mediterranean precipitation variability 1948–98. Int J Climatol 23:1843–1866

    Article  Google Scholar 

  • Feidas H, Noulopoulou Ch, Makrogiannis T, Bora-Senta E (2007) Trend analysis of precipitation time series in Greece and their relationship with circulation using surface and satellite data: 1955–2001. Theor Appl Climatol 87:155–177. doi:10.1007/s00704-006-0200-5

    Article  Google Scholar 

  • Folland CK, Knight J, Linderholm HW, Fereday D, Ineson S, Hurrell JW (2009) The summer North Atlantic oscillation: past, present, and future. J. Climate 22(5):1082–1103. doi:10.1175/2008JCLI2459.1

    Article  Google Scholar 

  • Geogdzhayev I, Mishchenko M, Terez E, Terez G, Gushchin G (2005) Regional advanced very high resolution radiometer-derived climatology of aerosol optical thickness and size. J Geophys Res 110:D23205. doi:10.1029/2005JD006170

    Article  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Hu Y, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys 7:5229–5236

    Article  Google Scholar 

  • Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe collection. Int J Climatol 25:865–879

    Article  Google Scholar 

  • Japan Meteorological Agency (2006) Characteristics of Global Sea Surface Temperature Analysis Data (COBE-SST) for climate use. Mon Report Climate Sys Sep 12:116

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–470

    Article  Google Scholar 

  • Luo D, Gong T (2006) A possible mechanism for the eastward shift of interannual NAO action centers in last three decades. Geophys Res Lett 33:L24815. doi:10.1029/2006GL027860

    Article  Google Scholar 

  • Luo D, Zhu Zh, Ren R, Zhong L, Wang Ch (2010) Spatial pattern and zonal shift of the North Atlantic Oscillation. Part I: a dynamical interpretation. J Atmos Sci 67:2805–2826. doi:10.1175/2010JAS3345.1

    Article  Google Scholar 

  • Mariotti A, Dell’Aquila A (2012) Decadal climate variability in the Mediterranean region: roles of large-scale forcings and regional processes. Clim Dynam 38:1129–1145. doi:10.1007/s00382-011-1056-7

    Article  Google Scholar 

  • Nastos P (2011) Trends and variability of precipitation with in the Mediterranean region, based on Global Precipitation Climatology Project (GPCP) and ground based datasets. In: Lambrakis N, Stournaras G, Katsanou K (eds) Advances in the research of aquatic environment, vol 1. Springer, Berlin, pp 67–74

    Chapter  Google Scholar 

  • Nguyen H, Evans A, Lucas C, Smith I, Timbal B (2013) The Hadley circulation in reanalyses: climatology, variability, and change. J Climate 26(10):3357–3376

    Article  Google Scholar 

  • Nojarov P (2015) Circulation factors affecting precipitation over Bulgaria. DOI, Theor Appl Climatol. doi:10.1007/s00704-015-1633-5

    Google Scholar 

  • Reichler T (2009) Changes in the atmospheric circulation as indicator of climate change. In: Letcher TM (ed) Climate change: observed impacts on planet earth, chap 7. Elsevier, The Netherlands, pp 145–164

  • Ruckstuhl C, Philipona R, Behrens K, Collaud Coen M, Dürr B, Heimo A, Mätzler C, Nyeki S, Ohmura A, Vuilleumier L, Weller M, Wehrli C, Zelenka A (2008) Aerosol and cloud effects on solar brightening and the recent rapid warming. Geophys Res Lett 35(12):L12708. doi:10.1029/2008GL034228

    Article  Google Scholar 

  • Stachnik J, Schumacher C (2011) A comparison of the Hadley circulation in modern reanalyses. JGeophys Res 116:D22102. doi:10.1029/2011JD016677

    Google Scholar 

  • Streets DG, Wu Y, Chin M (2006) Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophys Res Lett 33(15):L15806. doi:10.1029/2006GL026471

    Article  Google Scholar 

  • Sun J, Wang H, Yuan W (2009) Role of the tropical Atlantic sea surface temperature in the decadal change of the summer North Atlantic Oscillation. J Geophys Res 114:D20110. doi:10.1029/2009JD012395

    Article  Google Scholar 

  • Ulbrich U, Christoph M (1999) A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Clim Dynam 15:551–559

    Article  Google Scholar 

  • van Haren R, van Oldenborgh G, Lenderink G, Collins M, Hazeleger W (2013) SST and circulation trend biases cause an underestimation of European precipitation trends. Clim Dynam 40(1–2):1–20

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences, 2nd edn, vol 91. International Geophysics series, Elsevier, Academic Press, p 627

  • Zveryaev I, Allan R (2010) Summertime precipitation variability over Europe and its links to atmospheric dynamics and evaporation. J Geophys Res 115:D12102. doi:10.1029/2008JD011213

    Article  Google Scholar 

Download references

Acknowledgments

The NCEP Reanalysis data, COBE SST data and PRECL Precipitation data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at http://www.esrl.noaa.gov/psd/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nojarov.

Additional information

Responsible Editor: L. Gimeno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nojarov, P. The increase in September precipitation in the Mediterranean region as a result of changes in atmospheric circulation. Meteorol Atmos Phys 129, 145–156 (2017). https://doi.org/10.1007/s00703-016-0463-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-016-0463-z

Keywords

Navigation