Skip to main content

MPTP: Advances from an Evergreen Neurotoxin

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity
  • 2760 Accesses

Abstract

Since its discovery in 1976, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models in rodents and nonhuman primates have continuously renewed to keep up with progresses of Parkinson’s disease (PD) research. MPTP is able to reproduce almost all the clinical and neuropathological features of PD when administered to monkeys. In contrast, up to date no rodent model has been able to reproduce all PD features in one. Nevertheless, MPTP is a very versatile neurotoxin that can reproduce different aspects of PD pathology, depending upon the dose and regimen of administration. At the present time, a number of different MPTP models have been developed, allowing researchers to investigate either the classical PD neuropathology and neuroprotective mechanisms or known pathological processes underlining more recently discovered aspects of the disease, such as nonmotor symptoms. In this chapter primate and rodent MPTP models are reviewed, focusing mainly on the contribution that different MPTP protocols can offer to reproduce the multifaceted aspects of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, M. R., Berthet, A., Bychkov, E., Porras, G., Li, Q., Bioulac, B. H., Carl, Y. T., Bloch, B., Kook, S., Aubert, I., Dovero, S., Doudnikoff, E., Gurevich, V. V., Gurevich, E. V., & Bezard, E. (2010). Lentiviral overexpression of GRK6 alleviates L-dopa-induced dyskinesia in experimental Parkinson’s disease. Science Translational Medicine, 2(28), 28r–ra28.

    Google Scholar 

  • Al-Jarrah, M., Pothakos, K., Novikova, L., Smirnova, I. V., Kurz, M. J., Stehno-Bittel, L., & Lau, Y. S. (2007). Endurance exercise promotes cardiorespiratory rehabilitation without neurorestoration in the chronic mouse model of parkinsonism with severe neurodegeneration. Neuroscience, 149(1), 28–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Almirall, H., Pigarev, I., de la Calzada, M. D., Pigareva, M., Herrero, M. T., & Sagales, T. (1999). Nocturnal sleep structure and temperature slope in MPTP treated monkeys. Journal of Neural Transmission, 106, 1125–1134.

    CAS  PubMed  Google Scholar 

  • Alvarez-Fischer, D., Guerreiro, S., Hunot, S., Saurini, F., Marien, M., Sokoloff, P., Hirsch, E. C., Hartmann, A., & Michel, P. P. (2008). Modelling Parkinson-like neurodegeneration via osmotic minipump delivery of MPTP and probenecid. Journal of Neurochemistry, 107(3), 701–711.

    CAS  PubMed  Google Scholar 

  • Anderson, G., Noorian, A. R., Taylor, G., Anitha, M., Bernhard, D., Srinivasan, S., & Greene, J. G. (2007). Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Experimental Neurology, 207(1), 4–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arai, N., Misugi, K., Goshima, Y., & Misu, Y. (1990). Evaluation of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57 black mouse model for parkinsonism. Brain Research, 515(1–2), 57–63.

    CAS  PubMed  Google Scholar 

  • Barcia, C., Bautista, V., Sanchez-Bahillo, A., Fernandez-Villalba, E., Navarro-Ruis, J. M., Barreiro, A. F., Poza, Y. P. M., & Herrero, M. T. (2003). Circadian determinations of cortisol, prolactin and melatonin in chronic methyl-phenyl-tetrahydropyridine-treated monkeys. Neuroendocrinology, 78, 118–128.

    CAS  PubMed  Google Scholar 

  • Barcia, C., De Pablos, V., Bautista-Hernandez, V., Sanchez-Bahillo, A., Fernandez-Barreiro, A., Poza, M., & Herrero, M. T. (2004a). Measurement of motor disability in MPTP-treated macaques using a telemetry system for estimating circadian motor activity. Journal of Neuroscience Methods, 134, 59–64.

    CAS  PubMed  Google Scholar 

  • Barcia, C., Sanchez Bahillo, A., Fernandez-Villalba, E., Bautista, V., Poza, Y. P. M., Fernandez-Barreiro, A., Hirsch, E. C., & Herrero, M. T. (2004b). Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia, 46, 402–409.

    PubMed  Google Scholar 

  • Barcia, C., de Pablos, V., Bautista-Hernandez, V., Sanchez-Bahillo, A., Bernal, I., Fernandez-Villalba, E., Martin, J., Banon, R., Fernandez-Barreiro, A., & Herrero, M. T. (2005). Increased plasma levels of TNF-alpha but not of IL1-beta in MPTP-treated monkeys one year after the MPTP administration. Parkinsonism & Related Disorders, 11, 435–439.

    Google Scholar 

  • Barcia, C., Ros, C. M., Carrillo, M. A., Ros, F., Gomez, A., de Pablos, V., Bautista-Hernandez, V., Sanchez-Bahillo, A., Villalba, E. F., & Herrero, M. T. (2009). Increase of secondary processes of microglial and astroglial cells after MPTP-induced degeneration in substantia nigra pars compacta of non human primates. Journal of Neural Transmission, 73, 253–258.

    CAS  PubMed  Google Scholar 

  • Barcia, C., Ros, C. M., Annese, V., Gomez, A., Ros-Bernal, F., Aguado-Yera, D., Martinez-Pagan, M. E., de Pablos, V., Fernandez-Villalba, E., Herrero, M., Barcia, C., Ros, C. M., Annese, V., Gomez, A., Ros-Bernal, F., Aguado-Yera, D., Martinez-Pagan, M. E., de Pablos, V., Fernandez-Villalba, E., & Herrero, M. T. (2011). IFN-gamma signaling, with the synergistic contribution of TNF-alpha, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell death & disease, 2, e142.

    CAS  Google Scholar 

  • Bezard, E., & Przedborski, S. (2011). A tale on animals models of Parkinson’s disease. Movement Disorders, 26, 993–1002.

    PubMed  Google Scholar 

  • Bezard, E., Dovero, S., Bioulac, B., & Gross, C. (1997a). Effects of different schedules of MPTP administration on dopaminergic neurodegeneration in mice. Experimental Neurology, 148(1), 288–292.

    CAS  PubMed  Google Scholar 

  • Bezard, E., Dovero, S., Bioulac, B., & Gross, C. E. (1997b). Kinetics of nigral degeneration in a chronic model of MPTP-treated mice. Neuroscience Letters, 234(1), 47–50.

    CAS  PubMed  Google Scholar 

  • Bian, G. L., Wei, L. C., Shi, M., Wang, Y. Q., Cao, R., & Chen, L. W. (2007). Fluoro-Jade C can specifically stain the degenerative neurons in the substantia nigra of the 1-methyl-4-phenyl-1,2,3,6-tetrahydro pyridine-treated C57BL/6 mice. Brain Research, 1150, 55–61.

    CAS  PubMed  Google Scholar 

  • Blanchet, P. J., Calon, F., Morissette, M., Hadj Tahar, A., Bélanger, N., Samadi, P., Grondin, R., Grégoire, L., Meltzer, L., Di Paolo, T., & Bédard, P. J. (2004). Relevance of the MPTP primate model in the study of dyskinesia priming mechanisms. Parkinsonism & Related Disorders, 10(5), 297–304.

    Google Scholar 

  • Blum-Degen, D., Müller, T., Kuhn, W., Gerlach, M., Przuntek, H., & Riederer, P. (1995). Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neuroscience Letters, 202, 17–20.

    CAS  PubMed  Google Scholar 

  • Braak, H., & Del Tredici, K. (2008). Invited Article: Nervous system pathology in sporadic Parkinson disease. Neurology, 70(20), 1916–1925.

    PubMed  Google Scholar 

  • Carta, A. R., Kachroo, A., Schintu, N., Xu, K., Schwarzschild, M. A., Wardas, J., & Morelli, M. (2009). Inactivation of neuronal forebrain A receptors protects dopaminergic neurons in a mouse model of Parkinson’s disease. Journal of Neurochemistry, 111(6), 1478–1489.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carta, A. R., Frau, L., Pisanu, A., Wardas, J., Spiga, S., & Carboni, E. (2011). Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: New evidences on neuroprotection in a progressive Parkinson’s disease model. Neuroscience, 194, 250–261.

    CAS  PubMed  Google Scholar 

  • Chan, P., DeLanney, L. E., Irwin, I., Langston, J. W., & Di Monte, D. (1991). Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine in mouse brain. Journal of Neurochemistry, 57, 348–351.

    CAS  PubMed  Google Scholar 

  • Chaudhuri, K. R., & Naidu, Y. (2008). Early Parkinson’s disease and non-motor issues. Journal of Neurology, 255(Suppl. 5), 33–38.

    PubMed  Google Scholar 

  • Chaumette, T., Lebouvier, T., Aubert, P., Lardeux, B., Qin, C., Li, Q., Accary, D., Bezard, E., Bruley des Varannes, S., Derkinderen, P., et al. (2009). Neurochemical plasticity in the enteric nervous system of a primate animal model of experimental Parkinsonism. Neurogastroenterology and Motility, 21, 215–222.

    CAS  PubMed  Google Scholar 

  • Chia, L. G., Ni, D. R., Cheng, L. J., Kuo, J. S., Cheng, F. C., & Dryhurst, G. (1996). Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 5,7-dihydroxytryptamine on the locomotor activity and striatal amines in C57BL/6 mice. Neuroscience Letters, 218(1), 67–71.

    CAS  PubMed  Google Scholar 

  • Ciesielska, A., Joniec, I., Przybyłkowski, A., Gromadzka, G., Kurkowska-Jastrzebska, I., Członkowska, A., & Członkowski, A. (2003). Dynamics of expression of the mRNA for cytokines and inducible nitric synthase in a murine model of the Parkinson’s disease. Acta Neurobiologiae Experimentalis (Warsaw), 63(2), 117–126.

    Google Scholar 

  • Clarke, C. E., Sambrook, M. A., Mitchell, I. J., & Crossman, A. R. (1987). Levodopa-induced dyskinesia and response fluctuations in primates rendered parkinsonian with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Journal of the Neurological Sciences, 78(3), 273–280.

    CAS  PubMed  Google Scholar 

  • Colosimo, C., Granata, R., Del Zompo, M., Piccardi, M. P., Perretta, G., & Albanese, A. (1992). Chronic administration of MPTP to monkeys: Behavioural morphological and biochemical correlates. Neurochemistry International, 20(Suppl), 279S–285S.

    CAS  PubMed  Google Scholar 

  • Colotla, V. A., Flores, E., Oscos, A., Meneses, A., & Tapia, R. (1990). Effects of MPTP on locomotor activity in mice. Neurotoxicology and Teratology, 12(4), 405–407.

    CAS  PubMed  Google Scholar 

  • Cuenca, N., Herrero, M. T., Angulo, A., de Juan, E., Martinez-Navarrete, G. C., Lopez, S., Barcia, C., & Martin-Nieto, J. (2005). Morphological impairments in retinal neurons of the scotopic visual pathway in a monkey model of Parkinson’s disease. The Journal of Comparative Neurology, 493, 261–273.

    CAS  PubMed  Google Scholar 

  • D’Amato, R. J., Benham, D. F., & Snyder, S. H. (1987). Characterization of the binding of N-methyl-4-phenylpyridine, the toxic metabolite of the parkinsonian neurotoxin N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, to neuromelanin. Journal of Neurochemistry, 48, 653–658.

    PubMed  Google Scholar 

  • Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. Neuron, 39, 889–909.

    CAS  PubMed  Google Scholar 

  • Dauer, W., Kholodilov, N., Vila, M., Trillat, A. C., Goodchild, R., Larsen, K. E., Staal, R., Tieu, K., Schmitz, Y., Yuan, C. A., Rocha, M., Jackson-Lewis, V., Hersch, S., Sulzer, D., Przedborski, S., Burke, R., & Hen, R. (2002). Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14524–14529.

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Lella Ezcurra, A. L., Chertoff, M., Ferrari, C., Graciarena, M., & Pitossi, F. (2010). Chronic expression of low levels of tumor necrosis factor-alpha in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiol of Disease, 37(3), 630–640.

    Google Scholar 

  • Decamp, E., & Schneider, J. S. (2004). Attention and executive function deficits in chronic low dose MPTP-treated non-human primates. European Journal of Neuroscience, 20, 1371–1378.

    CAS  PubMed  Google Scholar 

  • Dluzen, D. E. (1992). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) reduces norepinephrine concentrations in the olfactory bulbs of male mice. Brain Research, 586(1), 144–147.

    CAS  PubMed  Google Scholar 

  • Dluzen, D. E., & Kefalas, G. (1996). The effects of intranasal infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) upon catecholamine concentrations within olfactory bulbs and corpus striatum of male mice. Brain Research, 741(1–2), 215–219.

    CAS  PubMed  Google Scholar 

  • Dobbs, R. J., Charlett, A., Purkiss, A. G., Dobbs, S. M., Weller, C., & Peterson, D. W. (1999). Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurologica Scandinavica, 100, 34–41.

    CAS  PubMed  Google Scholar 

  • Elsworth, J. D., Taylor, J. R., Sladek, J. R., Jr., Collier, T. J., Redmond, D. E., Jr., & Roth, R. H. (2000). Striatal dopaminergic correlates of stable parkinsonism and degree of recovery in old-world primates one year after MPTP treatment. Neuroscience, 95, 399–408.

    CAS  PubMed  Google Scholar 

  • Emborg, M. E. (2007). Nonhuman primate models of Parkinson’s disease. ILAR Journal//National Research Council, Institute of Laboratory Animal Resources, 48, 339–355.

    CAS  Google Scholar 

  • Fabre, E., Monserrat, J., Herrero, A., Barja, G., & Leret, M. L. (1999). Effect of MPTP on brain mitochondrial H2O2 and ATP production and on dopamine and DOPAC in the striatum. Journal of Physiology and Biochemistry, 55, 325–331.

    CAS  PubMed  Google Scholar 

  • Fornai, F., Schlüter, O. M., Lenzi, P., Gesi, M., Ruffoli, R., Ferrucci, M., Lazzeri, G., Busceti, C. L., Pontarelli, F., Battaglia, G., Pellegrini, A., Nicoletti, F., Ruggieri, S., Paparelli, A., & Südhof, T. C. (2005). Parkinson-like syndrome induced by continuous MPTP infusion: Convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 3413–3418.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forno, L. S., Langston, J. W., DeLanney, L. E., Irwin, I., & Ricaurte, G. A. (1986). Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Annals of Neurology, 20(4), 449–455.

    CAS  PubMed  Google Scholar 

  • Forno, L. S., DeLanney, L. E., Irwin, I., Di Monte, D., & Langston, J. W. (1992). Astrocytes and Parkinson’s disease. Progress in Brain Research, 94, 429–436.

    CAS  PubMed  Google Scholar 

  • Fredriksson, A., & Archer, T. (1994). MPTP-induced behavioural and biochemical deficits: A parametric analysis. Journal of Neural Transmission. Parkinson’s Disease and Dementia Section, 7(2), 123–132.

    CAS  PubMed  Google Scholar 

  • Garrido-Gil, P., Belzunegui, S., San Sebastian, W., Izal-Azcarate, A., Lopez, B., Marcilla, I., & Luquin, M. R. (2009). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure fails to produce delayed degeneration of substantia nigra neurons in monkeys. Journal of Neuroscience Research, 87, 586–597.

    CAS  PubMed  Google Scholar 

  • Giovanni, A., Sieber, B. A., Heikkila, R. E., & Sonsalla, P. K. (1994). Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Part 1: Systemic administration. Journal of Pharmacology and Experimental Therapeutics, 270, 1000–1007.

    CAS  PubMed  Google Scholar 

  • Goldstein, D. S., Li, S. T., Holmes, C., & Bankiewicz, K. (2003). Sympathetic innervation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease. Journal of Pharmacology and Experimental Therapeutics, 306, 855–860.

    CAS  PubMed  Google Scholar 

  • Guridi, J., Herrero, M. T., Luquin, M. R., Guillen, J., Ruberg, M., Laguna, J., Vila, M., Javoy-Agid, F., Agid, Y., Hirsch, E., & Obeso, J. A. (1996). Subthalamotomy in parkinsonian monkeys. Behavioural and biochemical analysis. Brain, 119(Pt 5), 1717–1727.

    PubMed  Google Scholar 

  • Haehner, A., Hummel, T., & Reichmann, H. (2011). Olfactory loss in Parkinson’s disease. Parkinsons Disease, 2011, 450939.

    Google Scholar 

  • Halliday, G., Herrero, M. T., Murphy, K., McCann, H., Ros-Bernal, F., Barcia, C., Mori, H., Blesa, F. J., & Obeso, J. A. (2009). No Lewy pathology in monkeys with over 10 years of severe MPTP Parkinsonism. Movement Disorders, 24, 1519–1523.

    PubMed  Google Scholar 

  • Hallman, H., Lange, J., Olson, L., Strömberg, I., & Jonsson, G. (1985). Neurochemical and histochemical characterization of neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurons in the mouse. Journal of Neurochemistry, 44(1), 117–127.

    CAS  PubMed  Google Scholar 

  • Hantraye, P., Brouillet, E., Ferrante, R., Palfi, S., Dolan, R., Matthews, R. T., & Beal, M. F. (1996). Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nature Medicine, 2, 1017–1021.

    CAS  PubMed  Google Scholar 

  • Hasegawa, E., Takeshige, K., Oishi, T., Murai, Y., & Minakami, S. (1990). 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochemical and Biophysical Research Communications, 170, 1049–1055.

    CAS  PubMed  Google Scholar 

  • Hawkes, C. H., Del Tredici, K., & Braak, H. (2009). Parkinson’s disease: The dual hit theory revisited. Annals of the New York Academy of Sciences, 1170, 615–622.

    PubMed  Google Scholar 

  • Heikkila, R. E., Hess, A., & Duvoisin, R. C. (1984). Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science, 224(4656), 1451–1453.

    CAS  PubMed  Google Scholar 

  • Heman, P., Barcia, C., Gomez, A., Ros, C. M., Ros-Bernal, F., Yuste, J. E., de Pablos, V., Fernandez-Villalba, E., Toledo-Cardenas, M. R., & Herrero, M. T. (2012). Nigral degeneration correlates with persistent activation of cerebellar Purkinje cells in MPTP-treated monkeys. Histology and Histopathology, 27(1), 89–94.

    CAS  PubMed  Google Scholar 

  • Herrero, M. T., Hirsch, E. C., Kastner, A., Ruberg, M., Luquin, M. R., Laguna, J., Javoy-Agid, F., Obeso, J. A., & Agid, Y. (1993a). Does neuromelanin contribute to the vulnerability of catecholaminergic neurons in monkeys intoxicated with MPTP? Neuroscience, 56, 499–511.

    CAS  PubMed  Google Scholar 

  • Herrero, M. T., Hirsch, E. C., Kastner, A., Luquin, M. R., Javoy-Agid, F., Gonzalo, L. M., Obeso, J. A., & Agid, Y. (1993b). Neuromelanin accumulation with age in catecholaminergic neurons from Macaca fascicularis brainstem. Developmental Neuroscience, 15, 37–48.

    CAS  PubMed  Google Scholar 

  • Herrero, M. T., Augood, S. J., Hirsch, E. C., Javoy-Agid, F., Luquin, M. R., Agid, Y., Obeso, J. A., & Emson, P. C. (1995). Effects of L-DOPA on preproenkephalin and preprotachykinin gene expression in the MPTP-treated monkey striatum. Neuroscience, 68(4), 1189–1198.

    CAS  PubMed  Google Scholar 

  • Hirsch, E. C., & Hunot, S. (2009). Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurology, 8(4), 382–397.

    CAS  PubMed  Google Scholar 

  • Hunot, S., & Hirsch, E. C. (2003). Neuroinflammatory processes in Parkinson’s disease. Annals of Neurology, 53(Suppl. 3), S49–S58.

    CAS  PubMed  Google Scholar 

  • Ischiropoulos, H., & al-Mehdi, A. B. (1995). Peroxynitrite-mediated oxidative protein modifications. FEBS Letters, 364, 279–282.

    CAS  PubMed  Google Scholar 

  • Jackson-Lewis, V., Jakowec, M., Burke, R. E., & Przedborski, S. (1995). Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration, 4(3), 257–269.

    CAS  PubMed  Google Scholar 

  • Javitch, J. A., D’Amato, R. J., Strittmatter, S. M., & Snyder, S. H. (1985). Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: Uptake of the metabolite N-methyl-4-phenylpyridinium by dopamine neurons explain selective toxicity. Proceedings of the National Academy of Science United States of America, 82, 2173–2177.

    CAS  Google Scholar 

  • Jenner, P. (2003). The MPTP-treated primate as a model of motor complications in PD: Primate model of motor complications. Neurology, 61, S4–S11.

    CAS  PubMed  Google Scholar 

  • Kohutnicka, M., Lewandowska, E., Kurkowska-Jastrzebska, I., Członkowski, A., & Członkowska, A. (1998). Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology, 39(3), 167–180.

    CAS  PubMed  Google Scholar 

  • Kordower, J. H., Emborg, M. E., Bloch, J., Ma, S. Y., Chu, Y., Leventhal, L., McBride, J., Chen, E. Y., Palfi, S., Roitberg, B. Z., Brown, W. D., Holden, J. E., Pyzalski, R., Taylor, M. D., Carvey, P., Ling, Z., Trono, D., Hantraye, P., Deglon, N., & Aebischer, P. (2000). Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science, 290(5492), 767–773.

    CAS  PubMed  Google Scholar 

  • Kowall, N. W., Hantraye, P., Brouillet, E., Beal, M. F., McKee, A. C., & Ferrante, R. J. (2000). MPTP induces alpha-synuclein aggregation in the substantia nigra of baboons. Neuroreport, 11, 211–213.

    CAS  PubMed  Google Scholar 

  • Kurkowska-Jastrzebska, I., Wrońska, A., Kohutnicka, M., Członkowski, A., & Członkowska, A. (1999). MHC class II positive microglia and lymphocytic infiltration are present in the substantia nigra and striatum in mouse model of Parkinson’s disease. Acta Neurobiologiae Experimentalis, 59, 1–8.

    CAS  PubMed  Google Scholar 

  • Laloux, C., Derambure, P., Kreisler, A., Houdayer, E., Bruezière, S., Bordet, R., Destée, A., & Monaca, C. (2008). MPTP-treated mice: Long-lasting loss of nigral TH-ir neurons but not paradoxical sleep alterations. Experimental Brain Research, 186(4), 635–642.

    PubMed  Google Scholar 

  • Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979–980. New York, NY.

    CAS  PubMed  Google Scholar 

  • Langston, J. W., Forno, L. S., Tetrud, J., Reeves, A. G., Kaplan, J. A., & Karluk, D. (1999). Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Annals of Neurology, 46, 598–605.

    CAS  PubMed  Google Scholar 

  • Lau, Y. S., Trobough, K. L., Crampton, J. M., & Wilson, J. A. (1990). Effects of probenecid on striatal dopamine depletion in acute and long-term 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. General Pharmacology, 21(2), 181–187.

    CAS  PubMed  Google Scholar 

  • Li, S. T., Dendi, R., Holmes, C., & Goldstein, D. S. (2002). Progressive loss of cardiac sympathetic innervation in Parkinson’s disease. Annals of Neurology, 52, 220–223.

    PubMed  Google Scholar 

  • Lofrumento, D. D., Saponaro, C., Cianciulli, A., De Nuccio, F., Mitolo, V., Nicolardi, G., & Panaro, M. A. (2011). MPTP-induced neuroinflammation increases the expression of pro-inflammatory cytokines and their receptors in mouse brain. Neuroimmunomodulation, 18(2), 79–88.

    CAS  PubMed  Google Scholar 

  • Long-Smith, C. M., Sullivan, A. M., & Nolan, Y. M. (2009). The influence of microglia on the pathogenesis of Parkinson’s disease. Progress in Neurobiology, 89, 277–287.

    CAS  PubMed  Google Scholar 

  • Luchtman, D. W., Shao, D., & Song, C. (2009). Behavior, neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson’s disease. Physiology and Behavior, 98(1–2), 130–138.

    CAS  PubMed  Google Scholar 

  • Marsden, C. D. (1961). Pigmentation in the nucleus substantiae nigrae of mammals. Journal of Anatomy, 95, 256–261.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer, R. A., Kindt, M. V., & Heikkila, R. E. (1986). Prevention of the nigrostriatal toxicity of 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine by inhibitors of 3,4-dihydroxyphenethylamine transport. Journal of Neurochemistry, 47, 1073–1079.

    CAS  PubMed  Google Scholar 

  • McGeer, P. L., Itagaki, S., Boyes, B. E., & McGeer, E. G. (1988). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology, 38, 1285–1291.

    CAS  PubMed  Google Scholar 

  • McGeer, P. L., & McGeer, E. G. (2008). Glial reactions in Parkinson’s disease. Movement Disorders, 23, 474–483.

    PubMed  Google Scholar 

  • McGeer, P. L., Schwab, C., Parent, A., & Doudet, D. (2003). Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Annals of Neurology, 54, 599–604.

    CAS  PubMed  Google Scholar 

  • Meredith, G. E., Totterdell, S., Petroske, E., Santa Cruz, K., Callison, R. C., Jr., & Lau, Y. S. (2002). Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Research, 956(1), 156–165.

    CAS  PubMed  Google Scholar 

  • Meredith, G. E., Dervan, A. G., & Totterdell, S. (2005). Activated microglia persist in the substantia nigra of a chronic MPTP mouse model of Parkinson’s disease. In J. P. Bolam, C. A. Ingham, & P. J. Magill (Eds.), The basal ganglia VIII (pp. 341–347). Singapore: Springer.

    Google Scholar 

  • Mogi, M., Harada, M., Kondo, T., Riederer, P., Inagaki, H., Minami, M., & Nagatsu, T. (1994). Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neuroscience Letters, 180, 147–150.

    CAS  PubMed  Google Scholar 

  • Monaghan, M. M., Leddy, L., Sung, M. L., Albinson, K., Kubek, K., Pangalos, M. N., Reinhart, P. H., Zaleska, M. M., & Comery, T. A. (2010). Social odor recognition: A novel behavioral model for cognitive dysfunction in Parkinson’s disease. Neurodegenerative Diseases, 7(1–3), 153–159.

    PubMed  Google Scholar 

  • Moratalla, R., Quinn, B., DeLanney, L. E., Irwin, I., Langston, J. W., & Graybiel, A. M. (1992). Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proceedings of the National Academy of Sciences of the United States of America, 89(9), 3859–3863.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mounayar, S., Boulet, S., Tande, D., Jan, C., Pessiglione, M., Hirsch, E. C., Feger, J., Savasta, M., Francois, C., & Tremblay, L. (2007). A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain, 130(Pt 11), 2898–2914.

    PubMed  Google Scholar 

  • Mount, M. P., Lira, A., Grimes, D., Smith, P. D., Faucher, S., Slack, R., Anisman, H., Hayley, S., & Park, D. S. (2007). Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. Journal of Neuroscience, 27(12), 3328–3337.

    CAS  PubMed  Google Scholar 

  • Necchi, D., Soldani, C., Ronchetti, F., Bernocchi, G., & Scherini, E. (2004). MPTP-induced increase in c-Fos- and c-Jun-like immunoreactivity in the monkey cerebellum. European Journal of Histochemistry, 48(4), 385–392.

    PubMed  Google Scholar 

  • Nicklas, W. J., Vyas, I., & Heikkila, R. E. (1985). Inhibition of NADH- inked oxidation in brain mitochondria by MPP+, a metabolite of the neurotoxin MPTP. Life Sciences, 36, 2503–2508.

    CAS  PubMed  Google Scholar 

  • Novikova, L., Garris, B. L., Garris, D. R., & Lau, Y. S. (2006). Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson’s disease. Neuroscience, 140(1), 67–76.

    CAS  PubMed  Google Scholar 

  • Olanow, C. W. (2007). The pathogenesis of cell death in Parkinson’s disease. Movement Disorders, 22(Suppl 17), S335–S342.

    PubMed  Google Scholar 

  • Olanow, C. W., Stochi, F., & Lang, A. E. (2011). Parkinson’s disease: Non-motor and non-dopaminergic features. New York: Wiley.

    Google Scholar 

  • Pattarini, R., Smeyne, R. J., & Morgan, J. I. (2007). Temporal mRNA profiles of inflammatory mediators in the murine 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine model of Parkinson’s disease. Neuroscience, 145(2), 654–668.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pearce, R. K., Jackson, M., Smith, L., Jenner, P., & Marsden, C. D. (1995). Chronic L-DOPA administration induces dyskinesias in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix Jacchus). Movement Disorders, 10, 731–740.

    CAS  PubMed  Google Scholar 

  • Perez-Otano, I., Herrero, M. T., Oset, C., De Ceballos, M. L., Luquin, M. R., Obeso, J. A., & Del Rio, J. (1991). Extensive loss of brain dopamine and serotonin induced by chronic administration of MPTP in the marmoset. Brain Research, 567, 127–132.

    CAS  PubMed  Google Scholar 

  • Petroske, E., Meredith, G. E., Callen, S., Totterdell, S., & Lau, Y. S. (2001). Mouse model of Parkinsonism: A comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience, 106(3), 589–601.

    CAS  PubMed  Google Scholar 

  • Pott Godoy, M. C., Tarelli, R., Ferrari, C. C., Sarchi, M. I., & Pitossi, F. J. (2008). Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain, 131, 1880–1894.

    PubMed  Google Scholar 

  • Prediger, R. D., Batista, L. C., Medeiros, R., Pandolfo, P., Florio, J. C., & Takahashi, R. N. (2006). The risk is in the air: Intranasal administration of MPTP to rats reproducing clinical features of Parkinson’s disease. Experimental Neurology, 202(2), 391–403.

    CAS  PubMed  Google Scholar 

  • Prediger, R. D., Aguiar, A. S., Jr., Rojas-Mayorquin, A. E., Figueiredo, C. P., Matheus, F. C., Ginestet, L., Chevarin, C., Bel, E. D., Mongeau, R., Hamon, M., Lanfumey, L., & Raisman-Vozari, R. (2010). Single intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice models early preclinical phase of Parkinson’s disease. Neurotoxicity Research, 17(2), 114–129.

    CAS  PubMed  Google Scholar 

  • Przedborski, S., & Vila, M. (2003). The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: A tool to explore the pathogenesis of Parkinson’s disease. Annals of the New York Academy of Sciences, 991, 189–198.

    CAS  PubMed  Google Scholar 

  • Przedborski, S., Jackson-Lewis, V., Yokoyama, R., Shibata, T., Dawson, V. L., & Dawson, T. M. (1996). Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 93, 4565–4571.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Purisai, M. G., McCormack, A. L., Langston, W. J., Johnston, L. C., & Di Monte, D. A. (2005). Alpha-synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiology of Disease, 20, 898–906.

    CAS  PubMed  Google Scholar 

  • Quinn, L. P., Perren, M. J., Brackenborough, K. T., Woodhams, P. L., Vidgeon-Hart, M., Chapman, H., Pangalos, M. N., Upton, N., & Virley, D. J. (2007). A beam-walking apparatus to assess behavioural impairments in MPTP-treated mice: Pharmacological validation with R-(−)-deprenyl. Journal of Neuroscience Methods, 164(1), 43–49.

    CAS  PubMed  Google Scholar 

  • Ramsay, R. R., & Singer, T. P. (1986). Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. Journal of Biological Chemistry, 261, 7585–7587.

    CAS  PubMed  Google Scholar 

  • Ransohoff, R. M., & Cardona, A. E. (2010). The myeloid cells of the central nervous system parenchyma. Nature, 468, 253–262.

    CAS  PubMed  Google Scholar 

  • Ransom, B. R., Kunis, D. M., Irwin, I., & Langston, J. W. (1987). Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neuroscience Letters, 75, 323–328.

    CAS  PubMed  Google Scholar 

  • Riachi, N. J., Harik, S. I., Kalaria, R. N., & Sayre, L. M. (1988). On the mechanisms underlying 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity II. Susceptibility among mammalian species correlates with the toxin’s metabolic patterns in brain microvessels and liver. Journal of Pharmacology and Experimental Therapeutics, 244(2), 443–448.

    CAS  PubMed  Google Scholar 

  • Riachi, N. J., LaManna, J. C., & Harik, S. I. (1989). Entry of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into the rat brain. Journal of Pharmacology and Experimental Therapeutics, 249, 744–748.

    CAS  PubMed  Google Scholar 

  • Ricaurte, G. A., Langston, J. W., Delanney, L. E., Irwin, I., Peroutka, S. J., & Forno, L. S. (1986). Fate of nigrostriatal neurons in young mature mice given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: A neurochemical and morphological reassessment. Brain Research, 376(1), 117–124.

    CAS  PubMed  Google Scholar 

  • Ricaurte, G. A., Irwin, I., Forno, L. S., DeLanney, L. E., Langston, E., & Langston, J. W. (1987). Aging and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced degeneration of dopaminergic neurons in the substantia nigra. Brain Research, 403(1), 43–51.

    CAS  PubMed  Google Scholar 

  • Rojo, A. I., Montero, C., Salazar, M., Close, R. M., Fernández-Ruiz, J., Sánchez-González, M. A., de Sagarra, M. R., Jackson-Lewis, V., Cavada, C., & Cuadrado, A. (2006). Persistent penetration of MPTP through the nasal route induces Parkinson’s disease in mice. European Journal of Neuroscience, 24(7), 1874–1884.

    PubMed  Google Scholar 

  • Rousselet, E., Joubert, C., Callebert, J., Parain, K., Tremblay, L., Orieux, G., Launay, J. M., Cohen-Salmon, C., & Hirsch, E. C. (2003). Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiology of Disease, 14(2), 218–228.

    CAS  PubMed  Google Scholar 

  • Sahgal, A., Andrews, J. S., Biggins, J. A., Candy, J. M., Edwardson, J. A., Keith, A. B., Turner, J. D., & Wright, C. (1984). N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) affects locomotor activity without producing a nigrostriatal lesion in the rat. Neuroscience Letters, 48(2), 179–184.

    CAS  PubMed  Google Scholar 

  • Scherer, H. J. (1939). Melanin pigmentation of the substantia nigra in primates. The Journal of Comparative Neurology, 71, 91–98.

    CAS  Google Scholar 

  • Schintu, N., Frau, L., Ibba, M., Garau, A., Carboni, E., & Carta, A. R. (2009). Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson’s disease. Neurotoxicity Research, 16(2), 127–139.

    CAS  PubMed  Google Scholar 

  • Schmidt, N., & Ferger, B. (2001). Neurochemical findings in the MPTP model of Parkinson’s disease. Journal of Neural Transmission, 108, 1263–1282.

    CAS  PubMed  Google Scholar 

  • Schneider, J. S., & Pope-Coleman, A. (1995). Cognitive deficits precede motor deficits in a slowly progressing model of parkinsonism in the monkey. Neurodegeneration, 4(3), 245–255.

    CAS  PubMed  Google Scholar 

  • Schwartz, M., Butovsky, O., Brück, W., & Hanisch, U. K. (2006). Microglial phenotype: Is the commitment reversible? Trends in Neurosciences, 29, 68–74.

    CAS  PubMed  Google Scholar 

  • Sedelis, M., Hofele, K., Auburger, G. W., Morgan, S., Huston, J. P., & Schwarting, R. K. (2000). MPTP susceptibility in the mouse: Behavioral, neurochemical, and histological analysis of gender and strain differences. Behavior Genetics, 30(3), 171–182.

    CAS  PubMed  Google Scholar 

  • Seniuk, N. A., Tatton, W. G., & Greenwood, C. E. (1990). Dose-dependent destruction of the coeruleus-cortical and nigral-striatal projections by MPTP. Brain Research, 527(1), 7–20.

    CAS  PubMed  Google Scholar 

  • Shimoji, M., Zhang, L., Mandir, A. S., Dawson, V. L., & Dawson, T. M. (2005). Absence of inclusion body formation in the MPTP mouse model of Parkinson’s disease. Brain Research. Molecular Brain Research, 134(1), 103–108.

    CAS  PubMed  Google Scholar 

  • Smeyne, M., Jiao, Y., Shepherd, K. R., & Smeyne, R. J. (2005). Glia cell number modulates sensitivity to MPTP in mice. Glia, 52, 144–152.

    PubMed  Google Scholar 

  • Snow, B. J., Vingerhoets, F. J., Langston, J. W., Tetrud, J. W., Sossi, V., & Calne, D. B. (2000). Pattern of dopaminergic loss in the striatum of humans with MPTP induced parkinsonism. Journal of Neurology, Neurosurgery, and Psychiatry, 68(3), 313–316.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Staal, R. G., & Sonsalla, P. K. (2000). Inhibition of brain vesicular monoamine transporter (VMAT2) enhances 1-methyl-4-phenylpyridinium neurotoxicity in vivo in rat striata. Journal of Pharmacology and Experimental Therapeutics, 293, 336–342.

    CAS  PubMed  Google Scholar 

  • Storvik, M., Arguel, M. J., Schmieder, S., Delerue-Audegond, A., Li, Q., Qin, C., Vital, A., Bioulac, B., Gross, C. E., Wong, G., Nahon, J. L., & Bezard, E. (2010). Genes regulated in MPTP-treated macaques and human Parkinson’s disease suggest a common signature in prefrontal cortex. Neurobiology of Disease, 38(3), 386–394.

    CAS  PubMed  Google Scholar 

  • Sulzer, D. (2010). Clues to how alpha-synuclein damages neurons in Parkinson’s disease. Movement Disorders, 25, S27–S31.

    PubMed  Google Scholar 

  • Tanila, H., Björklund, M., & Riekkinen, P. (1998). Cognitive changes in mice following moderate MPTP exposure. Brain Research Bulletin, 45(6), 577–582.

    CAS  PubMed  Google Scholar 

  • Tatton, N. A., & Kish, S. J. (1997). In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience, 77(4), 1037–1048.

    CAS  PubMed  Google Scholar 

  • Teismann, P., Tieu, K., Cohen, O., Choi, D. K., Wu du, C., Marks, D., Vila, M., Jackson-Lewis, V., & Przedborski, S. (2003). Pathogenic role of glial cells in Parkinson’s disease. Movement Disorders, 18, 121–129.

    PubMed  Google Scholar 

  • Tian, Y. M., Chen, X., Luo, D. Z., Zhang, X. H., Xue, H., Zheng, L. F., Yang, N., Wang, X. M., & Zhu, J. X. (2008). Alteration of dopaminergic markers in gastrointestinal tract of different rodent models of Parkinson’s disease. Neuroscience, 153(3), 634–644.

    CAS  PubMed  Google Scholar 

  • Tillerson, J. L., Caudle, W. M., Reverón, M. E., & Miller, G. W. (2002). Detection of behavioral impairments correlated to neurochemical deficits in mice treated with moderate doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Experimental Neurology, 178(1), 80–90.

    CAS  PubMed  Google Scholar 

  • Varastet, M., Riche, D., Maziere, M., & Hantraye, P. (1994). Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons observed in Parkinson’s disease. Neuroscience, 63, 47–56.

    CAS  PubMed  Google Scholar 

  • Vazquez-Claverie, M., Garrido-Gil, P., San Sebastian, W., Belzunegui, S., Izal-Azcarate, A., Lopez, B., Marcilla, I., & Luquin, M. R. (2009a). 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) does not elicit long-lasting increases in cyclooxygenase-2 expression in dopaminergic neurons of monkeys. Journal of Neuropathology and Experimental Neurology, 68, 26–36.

    CAS  PubMed  Google Scholar 

  • Vazquez-Claverie, M., Garrido-Gil, P., San Sebastian, W., Izal-Azcarate, A., Belzunegui, S., Marcilla, I., Lopez, B., & Luquin, M. R. (2009b). Acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administrations elicit similar microglial activation in the substantia nigra of monkeys. Journal of Neuropathology and Experimental Neurology, 68, 977–984.

    CAS  PubMed  Google Scholar 

  • Vila, M., Vukosavic, S., Jackson-Lewis, V., Neystat, M., Jakowec, M., & Przedborski, S. (2000). Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. Journal of Neurochemistry, 74(2), 721–729.

    CAS  PubMed  Google Scholar 

  • Wichmann, T., & DeLong, M. R. (2003). Pathophysiology of Parkinson’s disease: The MPTP primate model of the human disorder. Annals of the New York Academy of Sciences, 991, 199–213.

    CAS  PubMed  Google Scholar 

  • Willis, G. L., & Donnan, G. A. (1987). Histochemical, biochemical and behavioural consequences of MPTP treatment in C-57 black mice. Brain Research, 402(2), 269–274.

    CAS  PubMed  Google Scholar 

  • Yasuda, Y., Shimoda, T., Uno, K., Tateishi, N., Furuya, S., Yagi, K., Suzuki, K., & Fujita, S. (2008). The effects of MPTP on the activation of microglia/astrocytes and cytokine/chemokine levels in different mice strains. Journal of Neuroimmunology, 204, 43–51.

    CAS  PubMed  Google Scholar 

  • Yazdani, U., German, D. C., Liang, C. L., Manzino, L., Sonsalla, P. K., & Zeevalk, G. D. (2006). Rat model of Parkinson’s disease: Chronic central delivery of 1-methyl-4-phenylpyridinium (MPP+). Experimental Neurology, 200(1), 172–183.

    CAS  PubMed  Google Scholar 

  • Youdim, M. B., Grunblatt, E., Levites, Y., Maor, G., & Mandel, S. (2002). Early and late molecular events in neurodegeneration and neuroprotection in Parkinson’s disease MPTP model as assessed by cDNA micro-array; the role of iron. Neurotoxicity Research, 4, 679–689.

    CAS  PubMed  Google Scholar 

  • Yuste, J. E., Echeverry, M. B., Ros-Bernal, F., Gomez, A., Ros, C. M., Campuzano, C. M., Fernandez-Villalba, E., & Herrero, M. T. (2012). 7-Nitroindazole down-regulates dopamine/DARPP-32 signaling in neostriatal neurons in a rat model of Parkinson’s disease. Neuropharmacology, 63, 1258–1267.

    CAS  PubMed  Google Scholar 

  • Zesiewicz, T. A., & Hauser, R. A. (2002). Monoamine oxidase inhibitors. In S. A. Factor & W. J. Weiner (Eds.), Parkinson’s disease: Diagnosis and clinical management. New York: Demos Medical Publishing.

    Google Scholar 

Download references

Acknowledgments

MTH: CIBERNED, FIS (PI10 02827), and Fundación Séneca (15329/PI/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna R. Carta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Carta, A.R., Pisanu, A., Barcia, C., Herrero, M.T. (2014). MPTP: Advances from an Evergreen Neurotoxin. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_104

Download citation

Publish with us

Policies and ethics