Skip to main content
Log in

Administration of memantine and imipramine alters mitochondrial respiratory chain and creatine kinase activities in rat brain

  • Dementias - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Several studies have appointed for a role of glutamatergic system and/or mitochondrial function in major depression. In the present study, we evaluated the creatine kinase and mitochondrial respiratory chain activities after acute and chronic treatments with memantine (N-methyl-d-aspartate receptor antagonist) and imipramine (tricyclic antidepressant) in rats. To this aim, rats were acutely or chronically treated for 14 days once a day with saline, memantine (5, 10 and 20 mg/kg) and imipramine (10, 20 and 30 mg/kg). After acute or chronic treatments, we evaluated mitochondrial respiratory chain complexes (I, II, II–III and IV) and creatine kinase activities in prefrontal cortex, hippocampus and striatum. Our results showed that both acute and chronic treatments with memantine or imipramine altered respiratory chain complexes and creatine kinase activities in rat brain; however, these alterations were different with relation to protocols (acute or chronic), complex, dose and brain area. Finally, these findings further support the hypothesis that the effects of imipramine and memantine could be involve mitochondrial function modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

BDNF:

Brain-derived-neurotrophic factor

mtDNA:

Mitochondrial DNA

NMDA:

N-methyl-d-aspartate

References

  • Almeida A, Heales SJR, Bolanos JP, Medina JM (1998) Glutamate neurotoxicity is associated with nitric oxide-mediated mitochondrial dysfunction and glutathione depletion. Brain Res 790:209–216. doi:10.1016/S0006-8993(98)00064-X

    Article  PubMed  CAS  Google Scholar 

  • Almeida RC, Felisbino CS, López MG, Rodrigues ALS, Gabilan NH (2006) Evidence for the involvement of l-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of memantine in mice. Behav Brain Res 168:318–322. doi:10.1016/j.bbr.2005.11.023

    Article  PubMed  CAS  Google Scholar 

  • Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337. doi:10.1016/S0143-4160(03)00141-6

    Article  PubMed  CAS  Google Scholar 

  • Assis LC, Rezin GT, Comim CM, Valvassori SS, Jeremias IC, Zugno AI, Quevedo J, Streck EL (2009) Effect of acute administration of ketamine and imipramine on Creatine kinase activity in the brain of rats. Rev Bras Psiquiatr 31:247–252. doi:10.1590/S1516-44462009000300010

    Article  PubMed  Google Scholar 

  • Ben-Shachar D, Karry R (2008) Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 3:3676. doi:10.1371/journal.pone.0003676

  • Beretta S, Wood JP, Derham B, Sala G, Tremolizzo L, Ferrarese C, Osborne NN (2006) Partial mitochondrial complex I inhibition induces oxidative damage and perturbs glutamate transport in primary retinal cultures. Relevance to Leber Hereditary Optic Neuropathy (LHON). Neurobiol Dis 24:308–317

    Article  PubMed  CAS  Google Scholar 

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47:351–354. doi:10.1016/S0006-3223(99)00230-9

    Article  PubMed  CAS  Google Scholar 

  • Bessman SP, Carpenter LC (1985) The creatine–creatine phosphate energy shuttle. Annu Rev Biochem 54:831–865. doi:10.1146/annurev.bi.54.070185.004151

    Article  PubMed  CAS  Google Scholar 

  • Bindoff LA, Birch-Machin M, Cartlidge NE, Parker WD, Turnbull DM (1989) Mitochondrial function in Parkinson’s disease. Lancet 2:49

    Article  PubMed  CAS  Google Scholar 

  • Brookes PS, Land JM, Clark JB, Heales SJ (1998) Peroxynitrite and brain mitochondria: evidence for increased proton leak. J Neurochem 70:2195–2202

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Scapagnini G, Giuffrida-Stella AM, Bates TE, Clark JB (2001) Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegenerative disorders and longevity. Neurochem Res 26:739–764. doi:10.1023/A:1010955807739

    Article  PubMed  CAS  Google Scholar 

  • Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316. doi:10.1006/abbi.1996.0178

    Article  PubMed  CAS  Google Scholar 

  • Chang DT, Honick AS, Reynolds IJ (2006) Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 26:7035–7045

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Schon EA (2003) Mitochondria. J Neurol Neurosurg Psychiatry 74:1188–1199. doi:10.1136/jnnp.74.9.1188

    Article  PubMed  CAS  Google Scholar 

  • Chourbaji S, Vogt MA, Fumagalli F, Sohr R, Frasca A, Brandwein C, Hortnagl H, Riva MA, Sprengel R, Gass P (2008) AMPA receptor subunit 1 (GluR-A) knockout mice model the glutamate hypothesis of depression. FASEP J. 22:3129–3134. doi:10.1096/fj.08-106450

    Article  CAS  Google Scholar 

  • Corrêa C, Amboni G, Assis LC, Martins MR, Kapczinski F, Streck EL, Quevedo J (2007) Effects of lithium and valproate on hippocampus citrate synthase activity in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 31:887–891. doi:10.1016/j.pnpbp.2007.02.005

    Article  PubMed  Google Scholar 

  • Covington HE, Vialou V, Nestler EJ (2010) From synapse to nucleus: novel targets for treating depression. Neuropharmacology 58:683–693. doi:10.1016/j.neuropharm.2009.12.004

    Article  PubMed  CAS  Google Scholar 

  • Crane GE (1959) Cycloserine as an antidepressant agent. Am J Psychiatry 115:1025–1026

    PubMed  CAS  Google Scholar 

  • Curti C, Mingatto FE, Polizello AC, Galastri LO, Uyemura SA, Santos AC (1999) Fluoxetine interacts with the lipid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity. Mol Cell Biochem 199:103–109. doi:10.1023/A:1006912010550

    Article  PubMed  CAS  Google Scholar 

  • Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25:365–451. doi:10.1016/j.mam.2004.03.001

    Article  PubMed  CAS  Google Scholar 

  • Ferguson JM, Shingleton RN (2007) An open-label, flexible-dose study of memantine in major depressive disorder. Clin Neuropharmacol 30:136–144. doi:10.1097/WNF.0b013e3180314ae7

    Article  PubMed  CAS  Google Scholar 

  • Feyissa AM, Chandran A, Stockmeier CA, Karolwecz B (2009) Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry 33:70–75. doi:10.1016/j.pnpbp.2008.10.005

    Article  PubMed  CAS  Google Scholar 

  • Fisar Z, Hroudova J (2010) Activities of respiratory chain complexes and citrate synthase influenced by pharmacologically different antidepressants and mood stabilizers. Neuro Endocrinol Lett 31:123–153

    Google Scholar 

  • Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–26

    Article  PubMed  CAS  Google Scholar 

  • Garcia LB, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries G, Gavioli E, Kapczinski F, Quevedo J (2008a) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 32:140–144. doi:10.1016/j.pnpbp.2007.07.027

    Article  PubMed  CAS  Google Scholar 

  • Garcia LB, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries G, Gavioli E, Kapczinski F, Quevedo J (2008b) Chronic administration of ketamine elicits antidepressant-like effects in rats without affecting hippocampal brain-derived neurotrophic factor protein levels. Basic Clin Pharmacol Toxicol 103:502–506. doi:10.1111/j.1742-7843.2008.00210.x

    Article  PubMed  CAS  Google Scholar 

  • Garcia LS, Comim CM, Valvassori SS, Réus GZ, Stertz L, Kapczinski F, Gavioli EC, Quevedo J (2009) Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 33:450–455. doi:10.1016/j.pnpbp.2009.01.004

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388

    Article  PubMed  CAS  Google Scholar 

  • Gingrich JR, Pelkey KA, Fam SR, Huang Y, Petralia RS, Wenthold RJ, Salter MV (2004) Unique domain anchoring of Src to synaptic NMDA receptors via the mitochondrial protein NADH dehydrogenase subunit 2. Proc Natl Acad Sci USA 101:6237–6241. doi:10.1073/pnas.0401413101

    Article  PubMed  CAS  Google Scholar 

  • Hall J, Whalley HC, Marwick K, Mckirdy J, Sussmann J, Romaniuk L, Johnstone EC, Wan HI, Mclntosh AM, Lawrie SM (2009) Hippocampal function in schizophrenia and bipolar disorder. Psychol Med 7:1–10

    Google Scholar 

  • Hardingham GE, Bading H (2003) The Yin and Yang of NMDA receptor signalling. Trends Neurosci 26:81–89. doi:10.1016/S0166-2236(02)00040-1

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Sawa A, Iyo M (2007) Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry 62:1310–1316. doi:10.1016/j.biopsych.2007.03.017

    Article  PubMed  CAS  Google Scholar 

  • Hassel S, Almeida JR, Kerr N, Naus S, Ladouceur CD, Fissell K, Kupfer DJ, Phillips ML (2008) Elevated striatal and decreased dorsolateral prefrontal cortical activity in response to emotional stimuli in euthymic bipolar disorder: no associations with psychotropic medication load. Bipolar Disord 10:916–927

    Article  PubMed  Google Scholar 

  • Heinemann U, Buchheim K, Gabriel S (2002) Cell death and metabolic activity during epileptiform discharges and status epilepticus in the hippocampus. Prog Brain Res 135:197–210

    Article  PubMed  CAS  Google Scholar 

  • Horn D, Barrientos A (2008) Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life 60:421–429. doi:10.1002/iub.50

    Article  PubMed  CAS  Google Scholar 

  • Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathologic sera. Clin Chim Acta 7:597–604

    Article  PubMed  CAS  Google Scholar 

  • Jou SH, Chiu NY, Liu CS (2009) Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J 32:370–379

    PubMed  Google Scholar 

  • Karanian DA, Baude AS, Brown QB, Parsons CG, Bahr BA (2006) 3-Nitropropionic acid toxicity in hippocampus: protection through N-methyl-d-aspartate receptor antagonism. Hippocampus 16:834–842

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2:180–190. doi:10.1034/j.1399-5618.2000.020305.x

    Article  PubMed  CAS  Google Scholar 

  • Khuchua ZA, Qin W, Boero J, Cheng J, Payne RM, Saks VA, Strauss AW (1998) Octamer formation and coupling of cardiac sarcomeric mitochondrial Creatine kinase are mediated by charged N-terminal residues. J Biol Chem 273:22990–22996. doi:10.1074/jbc.273.36.22990

    Article  PubMed  CAS  Google Scholar 

  • Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308

    Article  PubMed  CAS  Google Scholar 

  • Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–992. doi:10.1038/nature07455

    Article  PubMed  CAS  Google Scholar 

  • Kudin AP, Malinska D, Kunz WS (2008) Sites of generation of reactive oxygen species in homogenates of brain tissue determined with the use of respiratory substrates and inhibitors. Biochim Biophys Acta 1777:689–695

    Article  PubMed  CAS  Google Scholar 

  • Lee TY, Tsai KL, Lee WS, Hsu C (2007) The molecular events occur during MK-801-induced cytochrome oxidase subunit II down-regulation in GT1–7 cells. J Mol Endocrinol 39:53–66. doi:10.1677/jme.1.00002

    Article  PubMed  CAS  Google Scholar 

  • Liebrenz M, Borgeat A, Leisinger R, Stohler R (2007) Intravenous ketamine therapy in a patient with a treatment-resistant major depression. Swiss Med Wkly 137:234–236

    PubMed  Google Scholar 

  • Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebough NG, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lucca G, Comim CM, Valvossori SS, Réus GZ, Vuolo F, Petronilho F, Gavioli EC, Dal-Pizzol F, Quevedo J (2009) Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm. J Psychiatr Res 43:864–869. doi:10.1016/j.jpsychires.2008.11.002

    Article  PubMed  Google Scholar 

  • Madrigal JLM, Olivenza R, Moro MA, Lizasoain I, Lorenzo P, Rodrigo J, Leza JC (2001) Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain. Neuropsychopharmacology 24:420–429. doi:10.1038/sj.npp.1395616

    Article  PubMed  CAS  Google Scholar 

  • Malinska D, Kulawiak B, Kudin AP, Kovacs R, Huchzermeyer C, Kann O, Szewczyk A, Kunz WS (2010) Complex III-dependent superoxide production of brain mitochondria contributes to seizure-related ROS formation. Biochim Biophys Acta 1797:1163–1170

    Article  PubMed  CAS  Google Scholar 

  • Mathers C, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:442. doi:10.1371/journal.pmed.0030442

  • McAllister J, Ghosh S, Berry D, Park M, Sadeghi S, Wang KX, Parker WD, Swerdlow RH (2008) Effects of memantine on mitochondrial function. Biochem Pharmacol 75:956–964. doi:10.1016/j.bcp.2007.10.019

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY (2000) Massive serum creatine kinase increases with atypical antipsychotic drugs: what is the mechanism and the message? Psychopharmacology 150:349–350. doi:10.1007/s002130000465

    Article  PubMed  CAS  Google Scholar 

  • Muhonen LH, Lönnqvist J, Lahti J, Alho H (2009) Age at onset of first depressive episode as a predictor for escitalopram treatment of major depression comorbid with alcohol dependence. Psychiatr Res 167:115–122. doi:10.1016/j.psychres.2008.05.001

    Article  CAS  Google Scholar 

  • Nicholls DG (2004) Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr Mol Med 4:149–177

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–174

    Article  PubMed  CAS  Google Scholar 

  • Nicholls DG, Vesce S, Kirk L, Chalmers S (2003) Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells. Cell Calcium 34:407–424

    Article  PubMed  CAS  Google Scholar 

  • Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926

    Article  PubMed  CAS  Google Scholar 

  • Parker WD, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  PubMed  Google Scholar 

  • Patel MN (2002) Oxidative stress, mitochondrial dysfunction, and epilepsy. Free Radic Res 36:1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain: stereotaxic coordinates, Second edn. Academic Press, Australia

    Google Scholar 

  • Phelps LE, Brutsche N, Moral JR, Luckenbaugh DA, Manji HK, Zarate CA Jr (2009) Family history of alcohol dependence and initial antidepressant response to an N-methyl-d-aspartate antagonist. Biol Psychiatry 65:181–184. doi:10.1016/j.biopsych.2008.09.029

    Article  PubMed  CAS  Google Scholar 

  • Pietá Dias C, Martins De Lima MN, Presti-Torres J, Dornelles A, Garcia VA, Siciliani Scalco F, Rewsaat Guimarães M, Constantino L, Budni P, Dal-Pizzol F, Schröder N (2007) Memantine reduces oxidative damage and enhances long-term recognition memory in aged rats. Neuroscience 146:1719–1725

    Article  PubMed  Google Scholar 

  • Réus GZ, Stringari RB, Kirsch TR, Fries GR, Kapczinski F, Roesler R, Quevedo J (2010) Neurochemical and behavioural effects of acute and chronic memantine administration in rats: Further support for NMDA as a new pharmacological target for the treatment of depression? Brain Res Bull 81:585–589. doi:10.1016/j.brainresbull.2009.11.013

    Article  PubMed  Google Scholar 

  • Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009a) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34:1021–1029. doi:10.1007/s11064-008-9865-8

    Article  PubMed  CAS  Google Scholar 

  • Rezin GT, Gonçalves CL, Daufenbach JF, Fraga DB, Santos PM, Ferreira GK, Hermani FV, Comim CM, Quevedo J, Streck EL (2009b) Acute administration of ketamine reverses the inhibition of mitochondrial respiratory chain induced by chronic mild stress. Brain Res Bull 79:418–421. doi:10.1016/j.brainresbull.2009.03.010

    Article  PubMed  CAS  Google Scholar 

  • Rogóz Z, Skuza G, Maj J, Danysz W (2002) Synergistic effect of uncompetitive NMDA receptor antagonists and antidepressant drugs in the forced swimming test in rats. Neuropharmacololgy 42:1024–1030. doi:10.1016/S0028-3908(02)00055-2

    Article  Google Scholar 

  • Rogóz Z, Skuza G, Legutko B (2008) Repeated co-treatment with fluoxetine and amantadine induces brain-derived neurotrophic factor gene expression in rats. Pharmacol Rep 60:817–826

    PubMed  Google Scholar 

  • Rojas JC, Saavedra JA, Gonzalez-Lima F (2008) Neuroprotective effects of memantine in a mouse model of retinal degeneration induced by rotenone. Brain Res 1215:208–217

    Article  PubMed  CAS  Google Scholar 

  • Rosenstock TR, Carvalho AC, Jurkiewicz A, Frussa-Filho R, Smaili SS (2004) Mitochondrial calcium, oxidative stress and apoptosis in a neurodegenerative disease model induced by 3-nitropropionic acid. J Neurochem 88:1220–1228

    Article  PubMed  CAS  Google Scholar 

  • Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51

    Article  PubMed  CAS  Google Scholar 

  • Santos PM, Scaini G, Rezin GT, Benedet J, Rochi N, Jeremias GC, Carvalho-Silva M, Quevedo J, Streck EL (2009) Brain creatine kinase activity is increased by chronic administration of paroxetine. Brain Res Bull 80:327–330. doi:10.1016/j.brainresbull.2009.09.007

    Article  PubMed  CAS  Google Scholar 

  • Schlattner U, Wallimann T (2000) Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding. J Biol Chem 275:17314–17320. doi:10.1074/jbc.M001919200

    Article  PubMed  CAS  Google Scholar 

  • Schulz JB, Matthews RT, Henshaw DR, Beal MF (1996) Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases. Neuroscience 71:1043–1048

    Article  PubMed  CAS  Google Scholar 

  • Segal M, Avital A, Drobot M, Lukanin A, Derevenski A, Sandbank S, Weizman A (2007a) CK levels in unmedicated bipolar patients. Eur Neuropsychopharmacol 17:763–767. doi:10.1016/j.euroneuro.2007.04.007

    Article  PubMed  CAS  Google Scholar 

  • Segal M, Avital A, Drobot M, Lukanin A, Derevenski A, Sandbank S, Weizman A (2007b) Serum creatine kinase level in unmedicated nonpsychotic, psychotic, bipolar and schizoaffective depressed patients. Eur. Neuropsychipharmacol. 17:194–198. doi:10.1016/j.euroneuro.2007.04.007

    Article  CAS  Google Scholar 

  • Shin JB, Streijger F, Beynon A, Peters T, Gadzala L, McMillen D, Bystrom C, Van der Zee CE, Wallimann T, Gillespie PG (2007) Hair bundles are specialized for ATP delivery via creatine kinase. Neuron 53:371–386

    Article  PubMed  CAS  Google Scholar 

  • Skuza G, Rogóz Z (2003) Sigma1 receptor antagonists attenuate antidepressant-like effect induced by co-administration of 1, 3 di-o-tolylguanidine (DTG) and memantine in the forced swimming test in rats. Pol J Pharmacol 55:1149–1152

    PubMed  CAS  Google Scholar 

  • Stanika RI, Pivovarova NB, Brantner CA, Watts CA, Winters CA, Andrews SB (2009) Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. Proc Natl Acad Sci USA 106:9854–9859. doi:10.1073/pnas.0903546106

    Article  PubMed  CAS  Google Scholar 

  • Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nature Neurosci 1:366–373

    Article  PubMed  CAS  Google Scholar 

  • Stowe DF, Camara AKS (2009) Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal 11:1373–1414

    Article  PubMed  CAS  Google Scholar 

  • Streck EL, Amboni G, Scaini G, Di-Pietro PB, Rezin GT, Valvassori SS, Luz G, Kapczinski F, Quevedo J (2008) Brain creatine kinase activity in an animal model of mania. Life Sci 82:424–429. doi:10.1016/j.lfs.2007.11.026

    Article  PubMed  CAS  Google Scholar 

  • Valvassori SS, Petronilho FC, Réus GZ, Steckert AV, Oliveira VB, Boeck CR, Kapczinski F, Dal-Pizzol F, Quevedo J (2008) Effect of N-acetylcysteine and/or deferoxamine on oxidative stress and hyperactivity in an animal model of mania. Prog Neuropsychopharmacol Biol Psychiatry 32:1064–1068. doi:10.1016/j.pnpbp.2008.02.012

    Article  PubMed  CAS  Google Scholar 

  • Volbracht C, van Beek J, Zhu C, Blomgren K, Leist M (2006) Neuroprotective properties of memantine indifferent invitro and in vivo models of excitotoxicity. Eur J Neurosci 23:2611–2622

    Article  PubMed  Google Scholar 

  • Weinbach EC, Costa JL, Nelson BD, Claggett CE, Hundal T, Bradley D, Morris SJ (1986) Effects of tricyclic antidepressant drugs on energy-linked reactions in mitochondria. Biochem Pharmacol 35:1445–1451. doi:10.1016/0006-2952(86)90108-5

    Article  PubMed  CAS  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    PubMed  CAS  Google Scholar 

  • Zaja-Milatovic S, Gupta RC, Aschner M, Milatovic D (2009) Protection of DFP-induced oxidative damage and neurodegeneration by antioxidants and NMDA receptor antagonist. Toxicol Appl Pharmacol 240:124–131

    Article  PubMed  CAS  Google Scholar 

  • Zarate CA Jr, Manji HK (2008) Riluzole in psychiatry: a systematic review of the literature. Expert Opin Drug Metab Toxicol 4:1223–1234. doi:10.1517/17425255.4.9.1223

    Article  PubMed  CAS  Google Scholar 

  • Zarate CA Jr, Singh JB, Carson PJ, Brutshe NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  PubMed  CAS  Google Scholar 

  • Zdanys K, Tampi RR (2008) A systematic review of off-label uses of memantine for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 32:1362–1374. doi:10.1016/j.pnpbp.2008.01.008

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Rojas JC, Gonzalez-Lima F (2006) Methylene blue prevents neurodegeneration caused by rotenone in the retina. Neurotox Res 9:47–57

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from ‘Conselho Nacional de Desenvolvimento Científico e Tecnológico’ (CNPq-Brazil–JQ, ELS), from the Instituto Cérebro e Mente (JQ) and UNESC (JQ and ELS). JQ and ELS are recipients of CNPq (Brazil) Productivity fellowships. GZR is holder of a FAPESC studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Quevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Réus, G.Z., Stringari, R.B., Rezin, G.T. et al. Administration of memantine and imipramine alters mitochondrial respiratory chain and creatine kinase activities in rat brain. J Neural Transm 119, 481–491 (2012). https://doi.org/10.1007/s00702-011-0718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0718-2

Keywords

Navigation