Skip to main content

Advertisement

Log in

Hybridization of Quercus castanea (Fagaceae) across a red oak species gradient in Mexico

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Interspecific gene flow between more than two species is a common phenomenon in oaks, which can occur simultaneously among different species, promoting the transfer of genetic material across species boundaries. However, the hybridization dynamics in multispecies hybrid zones remain unknown. In this study, we provide genetic evidence of hybridization and introgression of Quercus castanea across a natural gradient of red oak species richness. We analyzed five populations recognized morphologically as “pure” Q. castanea, one allopatric and four sympatric populations, where the number of red oak species associated with Q. castanea ranged from one to four. Also, one allopatric population of each red oak species that occurs in sympatry with Q. castanea was chosen as reference population (Q. crassipes, Q. laurina, Q. mexicana and Q. crassifolia). In total, six nSSRs were used in 10 and 20 individuals from each allopatric and sympatric populations, respectively. Our results showed that allopatric populations formed completely distinct genetic clusters. In sympatric populations, we found evidence of hybridization and introgression among Q. castanea and three of its associated red oak species. However, the occurrence and frequency of hybrids between Q. castanea and these species varied among stands. Our analyses provide evidence and new insights into hybridization and introgression dynamics within a Mexican red oak species complex, through a focal species, Q. castanea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abadie P, Roussel G, Dencausse B, Bonet C, Bertocchi E, Louvet JM, Kremer A, Garniere Géré P (2012) Strength, diversity and plasticity of postmating reproductive barriers between two hybridizing oak species (Quercus robur L. and Quercus petraea (Matt) Liebl.). J Evol Biol 25:157–173

    Article  CAS  PubMed  Google Scholar 

  • Acosta CA (2008) Estructura genética comparada en poblaciones de Quercus castanea y Q. desertícola, en sitios conservados y perturbados en la Cuenca de Cuitzeo, Michoacán, México. B.Sc Dissertation. Universidad Michoacana de San Nicolás de Hidalgo, Michoacán

  • Albarrán-Lara AL, Mendoza-Cuenca L, Valencia-Avalos S, González-Rodríguez A, Oyama K (2010) Leaf fluctuating asymmetry increases with hybridization and introgression between Quercus magnoliifolia and Quercus resinosa (Fagaceae) through an altitudinal gradient in Mexico. Int J Pl Sci 171:310–322

    Article  Google Scholar 

  • Aldrich PR, Michler CH, Sun W, Romero-Severson J (2002) Microsatellite markers for northern red oak (Fagaceae: Quercus rubra). Molec Ecol 2:472–474

    Article  CAS  Google Scholar 

  • Aldrich PR, Jagtap M, Michler CH, Romero-Severson J (2003) Amplification of North American red oak microsatellite markers in European white oaks and Chinese chestnut. Silvae Genet 52:176–179

    Google Scholar 

  • Alvarado-Dávalos LG (2014) Evaluación a escala fina de los efectos de un sistema de tala sobre la viabilidad poblacional de Quercus castanea en la Cuenca del lago Cuitzeo (Michoacán, México). M. Sc Dissertation. Universidad Nacional Autónoma de México, México

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York

    Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Molec Ecol 10:551–568

    Article  CAS  Google Scholar 

  • Boavida LC, Silva JP, Feijó JA (2001) Sexual reproduction in the cork oak (Quercus suber L). II. Crossing intra- and interspecific barriers. Sex Pl Reprod 14:143–152

    Article  Google Scholar 

  • Buerkle C (2009) Ecological context shapes hybridization dynamics. Molec Ecol 18:2077–2079

    Article  Google Scholar 

  • Buerkle CA, Rieseberg LH (2001) Low intraspecific variation for genomic isolation between hybridizing sunflower species. Evolution 55:684–691

    Article  CAS  PubMed  Google Scholar 

  • Burgarella C, Lorenzo Z, Jabbour-Zahab R, Lumaret R, Guichoux E, Petit RJ, Soto A, Gil L (2009) Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity 102:442–452

    Article  CAS  PubMed  Google Scholar 

  • Burger WC (1975) The species concept in Quercus. Taxon 24:45–50

    Article  Google Scholar 

  • Cavender-Bares J, Pahlich A (2009) Molecular, morphological, and ecological niche differentiation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae). Amer J Bot 96:1690–1702

    Article  Google Scholar 

  • Challenger A (1998) Utilización y conservación de los ecosistemas terrestres de México: pasado, presente y futuro. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México

    Google Scholar 

  • Coyne JA (1994) Ernst Mayr and the origin of species. Evolution 48:19–30

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Curtu AL, Gailing O, Finkeldey R (2007) Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evol Biol 7:218

    Article  PubMed Central  PubMed  Google Scholar 

  • Dodd RS, Afzal-Rafii Z (2004) Selection and dispersal in a multispecies oak hybrid zone. Evolution 58:261–269

    Article  PubMed  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Ann Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Ferrusquía-Villafranca I (1998) Geología de México: una sinopsis. In: Ramamoorthy TP, Bye R, Lot A, Fa J (eds) Diversidad biológica de México: orígenes y distribución. Instituto de Biología, Universidad Nacional Autónoma de México, México

    Google Scholar 

  • Gómez-Tuena A, Orozco-Esquivel MT, Ferrari L (2007) Expand igneous petrogenesis of 11 the Trans-Mexican Volcanic Belt. Geol Soc Amer Special Pap 22:129–181

    Google Scholar 

  • González-Rodríguez A, Arias DM, Valencia S, Oyama K (2004) Morphological and RAPD analysis of hybridization between Quercus affinis and Q. laurina (Fagaceae), two Mexican red oaks. Amer J Bot 91:401–409

    Article  Google Scholar 

  • Guttman SI, Weigt LA (1989) Electrophoretic evidence of relationships among Quercus (oaks) of eastern North America. Canad J Bot 67:339–351

    Article  Google Scholar 

  • Herrera-Arroyo ML (2013) Efectos de la fragmentación del hábitat en la diversidad y estructura genética de poblaciones de Quercus castanea Née, en la cuenca de Cuitzeo, Michoacán. PhD Dissertation. Universidad Nacional Autónoma de México, Morelia

  • Himrane H, Camarero JJ, Gil-Pelegrín E (2004) Morphological and ecophysiological variation of the hybrid oak Quercus subpyrenaica (Q. faginea × Q. pubescens). Trees 18:566–575

    Article  Google Scholar 

  • Howard DJ, Preszler RW, Williams J, Fenchel S, Boecklen WJ (1997) How discrete are oak species? Insights from a hybrid zone between Quercus grisea and Quercus gambelii. Evolution 5:747–755

    Article  Google Scholar 

  • Jensen J, Larsen A, Nielsen LR, Cottrell J (2009) Hybridization between Quercus robur and Q. petraea in a mixed oak stand in Denmark. Ann Forest Sci 66:706

    Article  Google Scholar 

  • Kampfer S, Lexer K, Glössl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186

    Article  CAS  Google Scholar 

  • Kaplan Z, Fehrer J (2007) Molecular evidence for a natural primary triple hybrid in plants revealed from direct sequencing. Ann Bot (Oxford) 99:1213–1222

    Article  CAS  Google Scholar 

  • Kashani N, Dodd RS (2002) Genetic differentiation of two California red oak species, Quercus parvula var. Shreveii and Q. wislizeni, based on AFLP genetic markers. USDA For Serv Gen Tech Rep 184:417–426

    Google Scholar 

  • Lagache L, Klein EK, Guichoux E, Petit RJ (2013) Fine-scale environmental control of hybridization in oaks. Molec Ecol 22:423–436

    Article  Google Scholar 

  • Lepais O, Gerber S (2011) Reproductive patterns shape introgression dynamics and species succession within the European white oak species complex. Evolution 65:156–170

    Article  PubMed  Google Scholar 

  • Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kreme A, Gerber S (2009) Species relative abundance and direction of introgression in oaks. Molec Ecol 18:2228–2242

    Article  CAS  Google Scholar 

  • Lepais O, Roussel G, Hubert A, Kremer A, Gerber S (2013) Strength and variability of postmating reproductive isolation barriers between four European white oak species. Tree Genet Genomes 9:841–853

    Article  Google Scholar 

  • Lexer C, Widmer A (2008) The genic view of plant speciation: recent progress and emerging questions. Phil Trans R Soc B Biol Sci 363:3023–3036

    Article  Google Scholar 

  • López-Caamal A, Mussali-Galante P, Valencia-Cuevas L, Jiménez Ramírez J, Vega Flores K, Tovar-Sánchez E (2013) Transgressive character expression in hybrid zones between the native invasives Tithonia tubaeformis and Tithonia rotundifolia (Asteraceae) in Mexico. Pl Syst Evol 299:1781–1792

    Article  Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CF, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273

    Article  CAS  PubMed  Google Scholar 

  • Lowry DB, Modliszewski JL, Wright KM, Wu CA, Willis JH (2008) The strength and genetic basis of reproductive isolating barriers in flowering plants. Phil Trans R Soc B 363:3009–3021

    Article  PubMed Central  PubMed  Google Scholar 

  • Moran EV, Willis J, Clark JS (2012) Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Amer J Bot 99:92–100

    Article  Google Scholar 

  • Muir G, Fleming CC, Schlötterer C (2000) Species status of hybridizing oaks. Nature 405:67–90

    Google Scholar 

  • Muller C (1952) Ecological control of hybridization in Quercus: a factor in the mechanism of evolution. Evolution 6:147–161

    Article  Google Scholar 

  • Neophytou C, Dounavi A, Fink S, Aravanopoulos FA (2011) Interfertile oaks in an island environment: I. High nuclear genetic differentiation and high degree of chloroplast DNA sharing between Q. alnifolia and Q. coccifera in Cyprus. A multipopulation study. Eur J Forest Res 130:543–555

    Article  Google Scholar 

  • Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann Sci Forest 50:25s–34s

    Article  Google Scholar 

  • Olrik D, Kjær ED (2007) The reproductive success of a Q. petraea × Q. robur F1-hybrid in back crossing situations. Ann Forest Sci 64:37–46

    Article  Google Scholar 

  • Ortego J, Bonal R (2010) Natural hybridization between kermes (Quercus coccifera L.) and holm oaks (Q. ilex L.) revealed by microsatellite markers. Pl Biol 12:234–238

    Article  Google Scholar 

  • Peñaloza-Ramírez JM (2011) Filogeografía e hibridación de cuatro especies del género Quercus (Fagaceae) en México. PhD. Dissertation. Universidad Nacional Autónoma de México

  • Peñaloza-Ramírez JM, González-Rodríguez A, Mendoza-Cuenca L, Caron H, Kremer A, Oyama K (2010) Interspecific gene flow in a multispecies oak hybrid zone in the Sierra Tarahumara of Mexico. Ann Bot (Oxford) 105:389–399

    Article  Google Scholar 

  • Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Mcsailkl UM, Van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicochea PG, Jensen JS, König AO, Lowe AJ, Flemming S, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries GM, Zeigenhagen B, Beauli JL, Kremer A (2002) Identification of refuge and post-glacial colonization routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecol Managem 156:49–74

    Article  Google Scholar 

  • Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164

    Article  CAS  Google Scholar 

  • Potts BM, Reid JB (1988) Hybridization as a dispersal mechanism. Evolution 42:1245–1255

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rangel SR, Zenteno ECR, Enríquez A (2002) El Género Quercus (Fagaceae) en el Estado de México. Ann Missouri Bot Gard 89:551–593

    Article  Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Ann Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nazakato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molec Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rzedowski J, Rzedowski GC (2001) Flora Fanerogámica del Valle de México. Instituto de Ecología, A. C., Centro Regional del Bajío. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México

  • Salvini D, Bruschi P, Fineschi S, Grossoni P, Kjær ED, Vendramin GG (2009) Natural hybridisation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. within an Italian stand as revealed by microsatellite fingerprinting. Pl Biol 11:758–765

    Article  CAS  Google Scholar 

  • Sánchez-Ortiz K (2012) Estructura y diversidad genética de Quecus glabrescens a través de un gradiente de encinos blancos asociados. BsSC Dissertation, Universidad Autónoma del Estado de Morelos, México

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207

    Article  PubMed  Google Scholar 

  • Steinhoff S (1993) Results of species hybridization with Quercus robur L and Quercus petraea (Matt) Liebl. Ann Sci Forest 50:137–143

    Article  Google Scholar 

  • Steinkellner H, Fluch S, Turetscheki E, Lexer C, Streiff R, Kremer A, Burg K, Glöss J (1997) Identification and characterization of (GA/CT)n microsatellite loci form Quercus petraea. Pl Molec Biol 33:1093–1096

    Article  CAS  Google Scholar 

  • Templeton AR (1989) The meaning of species and speciation: a genetic perspective. The units of evolution. In: Otte D, Endler JD (eds) Speciation and its consequences. Sinauer, Sunderland

    Google Scholar 

  • Tovar-Sánchez E, Oyama K (2004) Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: morphological and molecular evidence. Amer J Bot 91:1352–1363

    Article  Google Scholar 

  • Vähä JP, Primmer CR (2006) Efficiency of model based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Molec Ecol 15:63–72

    Article  Google Scholar 

  • Valbuena-Carabana M, González-Martínez SC, Sork VL, Collada C, Soto A, Goicoechea PG, Gil L (2005) Gene flow and hybridisation in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea (Matts.) Liebl.) in central Spain. Heredity 95:457–465

    Article  CAS  PubMed  Google Scholar 

  • Valbuena-Carabana M, González-Martínez SC, Hardy OJ, Gil L (2007) Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization. Molec Ecol 16:1207–1219

    Article  CAS  Google Scholar 

  • Valencia S (1994) Contribución a la delimitación taxonómica de tres especies del género Quercus subgénero Erythrobalanus: Q. laurina Humboldt et Bonpland, Q. affinis Scheidweiler y Q. ghiesbregthil Martens et Galeotti. MsC Dissertation. Universidad Nacional Autónoma de México, Mexico

  • Valencia S (1995) Contribución al conocimiento del género Quercus (Fagaceae) en el Estado de Guerrero, México. Contribuciones del Herbario de la Facultad de Ciencias No. 1, Universidad Nacional Autónoma de México, Mexico

  • Valencia S (2004) Diversidad del género Quercus en México. Bol Soc Bot Mex 75:33–53

    Google Scholar 

  • Valencia-Cuevas L, Piñero D, Mussali-Galante P, Valencia-Ávalos S, Tovar-Sánchez E (2014) Effect of a red oak species gradient on genetic structure and diversity of Quercus castanea (Fagaceae) in Mexico. Tree Genet Genomes 10:641–652

    Article  Google Scholar 

  • Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:233–239

    Article  Google Scholar 

  • Vazquez ML (2006) Trichome morphology in selected Mexican red oak species (Quercus section Lobatae). Sida 22:1091–1110

    Google Scholar 

  • Williams DG, Ehleringer JR (2000) Carbon isotope discrimination and water relations of oak hybrid populations in southwestern Utah. W N Amer Naturalist 60:121–129

    Google Scholar 

  • Williams JH, Boecklen WJ, Howard DJ (2001) Reproductive processes in two oak (Quercus) contact zones with different levels of hybridization. Heredity 87:680–690

    Article  CAS  PubMed  Google Scholar 

  • Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conservation Biol 15:1039–1053

    Article  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Gabriel Flores, Mauricio Mora, Efraín Ramirez, and Guillermo Sánchez for their help with field collections. We also thank Laura Marquez for technical assistance and Tatiana Cervantes for help with the red oaks leaves illustrations. This research was supported by grants from CONACYT- Mexico (61725) to E.T.S. Also, this research was supported by scholarship from CONACYT-SEP Mexico to L.V.C. We also thank the Posgrado en Ciencias Biológicas (UNAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efraín Tovar-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valencia-Cuevas, L., Mussali-Galante, P., Piñero, D. et al. Hybridization of Quercus castanea (Fagaceae) across a red oak species gradient in Mexico. Plant Syst Evol 301, 1085–1097 (2015). https://doi.org/10.1007/s00606-014-1151-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1151-4

Keywords

Navigation