Skip to main content
Log in

Transgressive character expression in hybrid zones between the native invasives Tithonia tubaeformis and Tithonia rotundifolia (Asteraceae) in Mexico

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Natural hybridization frequently promotes gene introgression among closely related species in sympatric populations, producing complex patterns of morphological variation. Therefore, a detailed understanding of the dynamics of interspecific gene flow and its morphological patterns is of widespread interest. We tested if introgressive hybridization promotes an increase in transgressive characters in comparison with the parental species. A sunflower species complex occurring in Mexico formed by two native invasive species, Tithonia tubaeformis and Tithonia rotundifolia, was analyzed using 46 morphological characters (leaf, flower and fruit) in five hybrid zones (N = 150 individuals) and two pure sites for each parental species (N = 80 individuals). In general, T. tubaeformis differed significantly from T. rotundifolia in all the examined characters, except six foliar and one inflorescence character. Morphological characters support the hypothesis of hybridization in this complex, even though both species remain morphological distinct in mixed stands. Individual hybrids appear to be a mosaic of parent-like (24.8 % of traits), intermediate (26.1 %) and transgressive (37.8 %) phenotypes (the remaining 11.3 % of the traits did not differ significantly from both parental species). Our results suggest that individuals from the same parental species were more similar among themselves than to putative hybrids, indicating occasional hybridization with segregation in hybrid types or backcrossing to parents. Evidence indicates a unidirectional pattern of gene flow toward T. rotundifolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal A (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326

    Article  PubMed  CAS  Google Scholar 

  • Anderson E (1949) Introgressive hybridization. Wiley, New York

    Google Scholar 

  • Anderson E (1953) Introgressive hybridization. Biol Rev 28:280–307

    Article  Google Scholar 

  • Aparicio MS, Castro-Ramírez AE, León CJL, Ishiki IM (2003) Entomofauna asociada a maíz de temporal con diferentes manejos de malezas en Chiapas, México. Manejo Integrado de Plagas y Agroecología 70:65–73

    Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York

    Google Scholar 

  • Blumler MA (2003) Introgression as a spatial phenomenon. Phys Geogr 24:414–432

    Article  Google Scholar 

  • Brennan CA, Bridle JR, Wang AL, Hiscock SJ, Abbott RJ (2009) Adaptation and selection in the Senecio (Asteraceae) hybrid zone on Mount Etna, Sicily. New Phytol 183:702–717

    Article  PubMed  Google Scholar 

  • Brochmann C, Borgen L, Stabbetorp OE (2000) Multiple diploid hybrid speciation of the Canary Island endemic Argyranthemum sundingii (Asteraceae). Plant Syst Evol 220:77–92

    Article  Google Scholar 

  • Bruschi P, Vendramin GG, Bussotti F, Grossoni P (2000) Morphological and molecular differentiation between Quercus petrea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in northern and central Italy. Ann Bot-London 85:325–333

    Article  Google Scholar 

  • Buerkle CA, Morris RJ, Asmussen MA, Rieseberg LH (2000) The likelihood of homoploid hybrid speciation. Heredity 84:441–451

    Article  PubMed  Google Scholar 

  • Caraway V, Carr GD, Morden CW (2001) Assessment of hybridization and introgression in lava-colonizing Hawaiian Dubautia (Asteraceae: Madiinae) using RAPD markers. Am J Bot 88:694–16881

    Article  Google Scholar 

  • Carney SE, Gardner KA, Rieseberg LH (2000) Evolutionary changes over the fifty-year history of a hybrid population of sunflowers (Helianthus). Evolution 54:462–474

    PubMed  CAS  Google Scholar 

  • Cattell MV, Karl SA (2004) Genetics and morphology in a Borrichia frutescens and B. arborescens (Asteraceae) hybrid zone. Am J Bot 91:1757–1766

    Article  PubMed  CAS  Google Scholar 

  • Daehler C, Strong DR (1997) Hybridization between introduced smooth cordgrass (Spartina alterniflora; Poaceae) and native California cordgrass (S. foliosa) in San Francisco Bay, California, USA. Am J Bot 84:607–611

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97:7043–7050

    Article  PubMed  CAS  Google Scholar 

  • Freeman DC, Turner WA, McArthur ED, Graham JH (1991) Characterization of a narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). Am J Bot 78:805–815

    Article  Google Scholar 

  • García AN, Chaila S, González Navarro H, de la Vega M, Raimondo JG (2000) Competencia específica de Tithonia tubaeformis [Jack] Cass. en cultivos de soja (Glycine max (L.) Merril) y poroto negro (Phaseolus vulgaris L.). Revista Agronómica del Noroeste Argentino 30:19–30

    Google Scholar 

  • González-Rodríguez A, Arias DM, Valencia S, Oyama K (2004) Morphological and RAPD analysis of hybridization between Quercus affinis and Q. laurina (Fagaceae), two Mexican red oaks. Am J Bot 91:401–409

    Article  PubMed  Google Scholar 

  • Gray AJ, Marshall DF, Raybould AF (1991) A century of evolution in Spartina anglica. Adv Ecol Res 21:1–62

    Google Scholar 

  • Hardig TM, Brunsfeld SJ, Fritz RS, Morgan M, Orians CM (2000) Morphological and molecular evidence for hybridization and introgression in a willow (Salix) hybrid zone. Mol Ecol 9:9–24

    Article  PubMed  CAS  Google Scholar 

  • Harrison RG (1990) Hybrid zones: windows on evolutionary process. Oxford Surv Evol Biol 7:69–128

    Google Scholar 

  • Heiser CB (1947) Hybridization between the sunflower species Helianthus annus and H. petiolaris. Evolution 1:249–262

    Article  Google Scholar 

  • Heiser CB (1951) Hybridization in the annual sunflowers: Helianthus annuus × H. debilis var. cucumerifolius. Evolution 5:42–51

    Article  Google Scholar 

  • Hejda M, Pysek P, Jarosik V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403

    Google Scholar 

  • James JK, Abbott RJ (2005) Recent, allopatric, homoploid hybrid speciation: the origin of Senecio squalidus (Asteraceae) in the British Isles from a hybrid zone on Mount Etna, Sicily. Evolution 59:2533–2547

    PubMed  Google Scholar 

  • Jian O, Changyi LU, O’Toole DK (2008) A risk assessment system for alien plant bio-invasion in Xiamen, China. J Environ Sci 20:989–997

    Google Scholar 

  • Jörgensen S, Mauricio R (2005) Hybridization as a source of evolutionary novelty: leaf shape in a Hawaiian composite. Genetica 123:171–179

    Article  PubMed  Google Scholar 

  • Kim SC, Rieseberg LH (1999) Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression. Genetics 153:965–977

    PubMed  CAS  Google Scholar 

  • Kleinschmit JRG, Bacilieri R, Kremer A, Roloff A (1995) Comparison of morphological and genetic traits of penduculate oak (Quercus robur (L.)) and sessile oak (Quercus petrea (Matt.)) Liebl). Silvae Genet 44:5–6

    Google Scholar 

  • La Duke JC (1982) Revision of Tithonia. Rhodora 84:453–522

    Google Scholar 

  • Lane MA (1996) Pollination biology of Compositae. In: Caligari PDS, Hind DJN (eds) Compositae: Biology and utilization. Kew: Proceedings of the International Compositae Conference, pp 61–80

  • Larenas-Parada G, Viana ML, Chafatinos T, Escobar NE (2004) Relación suelo-especie invasora (Tithonia tubaeformis) en el sistema ribereño del río Arenales, Salta, Argentina. Ecol Austral 14:19–29

    Google Scholar 

  • Levin DA (2000) The origin, expansion, and demise of plant species. Oxford University Press, New York

    Google Scholar 

  • Levin DA, Francisco-Ortega J (1996) Hybridization and the extinction of rare plant species. Conserv Biol 10:10–16

    Article  Google Scholar 

  • Lexer C, Randell RA, Rieseber LH (2003) Experimental hybridization as a tool for studying selection in the wild. Ecology 84:1688–1699

    Article  Google Scholar 

  • MacDonald IAW, Reaser JK, Bright C, Neville LE, Howard GW, Murphy SJ, Preston G (eds) (2003) Invasive alien species in southern Africa: national reports and directory of resources. Global Invasive Species Programme, Cape Town, South Africa

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237

    Article  PubMed  Google Scholar 

  • Mito T, Uesugi T (2004) Invasive alien species in Japan: the status quo and the new regulation for prevention of their adverse effects. Global Environ Res 8:171–191

    Google Scholar 

  • Mráz P, Gaudeul M, Rioux D, Gielly L, Choler P, Taberlet P (2007) Genetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an eastern Alpine refugium. J Biogeogr 34:2100–2114

    Article  Google Scholar 

  • Muoghalu JI, Chuba DK (2005) Seed germination and reproductive strategies of Tithonia diversifolia (Hemsl.) Gray and Tithonia rotundifolia (P. M.) Blake. Appl Ecol Env Res 3:39–46

    Google Scholar 

  • Nikolova L, Michail C, Gerald S (2004) Interspecific hybridization between H. pumilus Nutt. and H. annuus L. and their potential for cultivated sunflower improvement. Helia 27:151–162

    Google Scholar 

  • Olorode O, Hassan SO, Olabinjo OA, Raimi IO (2011) Tithonia (Asteraceae) in Nigeria. Ife J Sci 13:1–10

    Google Scholar 

  • Ramirez-Rodríguez R, Tovar-Sánchez E, Jiménez JR, Vega KF, Rodríguez V (2011) Introgressive hybridization between Brahea dulcis and B. nitida (Arecaceae) in Mexico: evidence from morphological and PCR-RAPD patterns. Botany 89:545–557

  • Richardson DM, Pysek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Progr Phys Geog 30:409–431

    Google Scholar 

  • Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599–624

    Article  Google Scholar 

  • Rieseberg LH, Ellstrand NC (1993) What can morphological and molecular markers tell us about plant hybridization? Crit Rev Plant Sci 12:213–241

    CAS  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation, and speciation. Heredity 83:363–372

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH, Kim SC, Randell RA, Whitney KD, Gross BL, Lexer C, Clay K (2007) Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129:149–165

    Article  PubMed  Google Scholar 

  • Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions 11:1093–1105

    Article  Google Scholar 

  • Schwarzbach AE, Donovan LA, Rieseberg LH (2001) Transgressive character expression in a hybrid sunflower species. Am J Bot 88:270–277

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biol J Linn Soc 82:485–501

    Article  Google Scholar 

  • Stat Soft (2007) STATISTICA (data analysis software system), version 8.0. www.statsoft.com

  • Tovar-Sánchez E, Oyama K (2004) Natural hybridization between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: morphological and molecular evidence. Am J Bot 91:1352–1363

    Article  PubMed  Google Scholar 

  • Tovar-Sánchez E, Rodríguez-Carmona F, Aguilar-Mendiola V, Mussali-Galante P, López-Caamal A, Valencia-Cuevas L (2012) Molecular evidence of hybridization in two native invasive species: Tithonia tubaeformis and T. rotundifolia (Asteraceae) in Mexico. Plant Syst Evol 298:1947–1959

    Article  Google Scholar 

  • Valéry L, Fritz H, Lefeuvre J, Simberloff D (2008) In search of a real definition of the biological invasion phenomenon itself. Biol Invasions 10:1345–1351

    Google Scholar 

  • Vitousek PM, D’antonio M, Loope L, Rejmánek M, Westbrooks R (1997) Introduced species: a significant component of human-caused global change. New Zeal J Ecol 21:1–16

    Google Scholar 

  • Wilson P (1992) On inferring hybridity from morphological intermediacy. Taxon 41:11–23

    Article  Google Scholar 

  • Zar JH (2010) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Ziller SR, Reaser JK, Neville LE, Brandt K (eds) (2005) Invasive alien species in South America: national directory of resources. Global Invasive Species Programme, Cape Town, South Africa

Download references

Acknowledgments

We thank Mauricio Mora Jarvio, Leonardo Beltrán, Paulette Arellano Vignettes, Tatiana Cervantes Ramírez, César Martínez Becerril, Guadalupe Rangel Altamirano, L. Márquez Valdemar, and Elgar Castillo Mendoza for technical assistance. This research was supported by grants from CONACYT-Mexico (61275) to E. T. S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efraín Tovar-Sánchez.

Electronic supplementary material

Appendices

Appendix 1

Phenotypic characterization (Schwarzbach et al. 2001) procedure from the five hybrid zones of the Tithonia tubaeformis and T. rotundifolia complex in Mexico (mean ± SD). Abbreviations of characters are described in Table 2. Asterisk indicates significant differences among taxa (one-way ANOVA test; *P < 0.05, **P ≤ 0.01, ***P < 0.001, ns no significant differences). Mean values with the same letter for each taxa did not differ at P < 0.05 after a multiple comparison test (Tukey’s test).

Appendix 2

A Principal component analysis for disk floret morphology variation in Tithonia tubaeformis × T. rotundifolia complex (4 measured characters) in five hybrids zones in Mexico. B Principal component analysis for inflorescence morphology variation in Tithonia tubaeformis × T. rotundifolia complex (4 measured characters) in five hybrids zones in Mexico. C Principal component analysis for phyllary morphology variation in Tithonia tubaeformis × T. rotundifolia complex (6 measured characters) in five hybrids zones in Mexico. D Principal component analysis for pale morphology variation in Tithonia tubaeformis × T. rotundifolia complex (3 measured characters) in five hybrids zones in Mexico. E Principal component analysis for achene morphology variation in Tithonia tubaeformis × T. rotundifolia complex (14 measured characters) in five hybrids zones in Mexico. F Principal component analysis for leaf morphology variation in Tithonia tubaeformis × T. rotundifolia complex (8 measured characters) in five hybrids zones in Mexico. G Principal component analysis for ligule morphology variation in Tithonia tubaeformis × T. rotundifolia complex (8 measured characters) in five hybrids zones in Mexico. Genetic identity of each individual was identified using the NewHybrids index

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Caamal, A., Mussali-Galante, P., Valencia-Cuevas, L. et al. Transgressive character expression in hybrid zones between the native invasives Tithonia tubaeformis and Tithonia rotundifolia (Asteraceae) in Mexico. Plant Syst Evol 299, 1781–1792 (2013). https://doi.org/10.1007/s00606-013-0834-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0834-6

Keywords

Navigation