Skip to main content
Log in

Morphological and ecophysiological variation of the hybrid oak Quercus subpyrenaica (Q. faginea × Q. pubescens)

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Natural hybridization is common among oaks. We studied the variability of morphological and ecophysiological variables in the hybrid Quercus subpyrenaica and its assumed parental species Q. faginea and Q. pubescens, which co-occur in NE Spain. To assess the fitness of these taxa we studied several ecophysiological variables (hydraulic conductivity, K h; hydraulic specific conductivity, K s; leaf specific conductivity, LSC; water potential corresponding to a 50% loss of conductivity, PLC50; efficiency of light absorption, E a). We performed a correspondence analysis (CA) to ordinate seedlings, grown under homogeneous environmental conditions, according to their plant and leaf morphology. The CA axis 1 synthesized intra-taxon variability, while the CA axis 2 summarized inter-taxa variability. Q. subpyrenaica showed a wide spectrum of forms, but they were overall closer to those of Q. faginea. We defined three phenotypes within the hybrid based on morphology, which were: (i) the robur group (Qs-r; auriculate leaf base, rounded lobe apex); (ii) Q. pubescens (Qs-p; rounded leaf base, acute lobe apex); and (iii) Q. faginea (Qs-f; acute leaf base, acute-spiny lobe apex). The mean values of K s and PLC50 arranged the hybrid groups in the same order as the ordination based on leaf morphology. The Qs-r group showed the highest values of K s and PLC50, while the Qs-f group showed the lowest. Both morphologically and ecophysiologically, the hybrids showed a wide range of values, which spanned and even exceeded the variation of parental taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aas G (1993) Taxonomical impact of morphological variation in Quercus robur and Q. petraea: a contribution to the hybrid controversy. Ann Sci For 50:107–114

    Google Scholar 

  • Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiol 7:227–238

    PubMed  Google Scholar 

  • Amaral Franco J (1990) Quercus L. In: Castroviejo S, Laínz M, López G, Montserrat P, Muñoz F, Paiva J, Villar L (eds) Flora Ibérica. II. Plantas Vasculares de la Península Ibérica e Islas Baleares. RJBM-CSIC, Madrid, pp 16–36

  • Axelrod DI (1983) Biogeography of oaks in the Arcto-Tertiary province. Ann Miss Bot Gard 70:629–657

    Google Scholar 

  • Bacilieri R, Ducousso A, Petit RJ, Kremer A (1996) Mating system and asymmetric hybridization in a mixed stand of European oaks. Evolution 50:900–908

    Google Scholar 

  • Benzécri JP (1992) Correspondence analysis handbook. Dekker, New York

  • Blanco E, Casado MA, Costa M, Escribano R, García M, Génova M, Gómez A, Gómez F, Moreno JC, Morla C, Regato P, Sáinz H (1997) Los bosques ibéricos: una interpretación geobotánica. Planeta, Madrid

  • ter Braak CJF (1995) Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp 91–174

  • Brubaker LB (1986) Responses of tree populations to climatic change. Vegetatio 67:119–130

    Google Scholar 

  • Bruschi P, Vendramin GG, Bussotti F, Grossoni P (2000) Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in northern and central Italy. Ann Bot 85:325–333

    Article  Google Scholar 

  • Bruschi P, Grossoni P, Bussotti F (2003) Within- and among-tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees 17:164–172

    Google Scholar 

  • Bussotti F, Grossoni P (1997) European and Mediterranean oaks (Quercus, Fagaceae)—SEM characterization of the micromorphology of the abaxial leaf surface. Bot J Linn Soc 124:183–199

    Article  Google Scholar 

  • Camarero JJ, Sisó S, Gil-Pelegrín E (2003) Fractal dimension does not adequately describe the complexity of leaf margin in seedlings of Quercus species. An Jardín Bot Madrid 60:63–71

    Google Scholar 

  • Carlisle A, Brown AHF (1965) The assessment of the taxonomic status of mixed oak (Quercus spp.) populations. Watsonia 6:120–127

    Google Scholar 

  • Catalán Bachiller G (1991) Semillas de árboles y arbustos forestales. MAP-ICONA, Madrid

  • Ceballos L, Ruiz de la Torre J (1979) Árboles y arbustos de la España peninsular. ETSIM, Madrid

  • Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407

    CAS  PubMed  Google Scholar 

  • Cochard H, Cruiziat P, Tyree MT (1992) Use of positive pressures to establish vulnerability curves. Plant Physiol 100:205–209

    Google Scholar 

  • Cochard H, Breda N, Granier A (1996) Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Ann Sci For 53:197–206

    Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrín E (2002) Functional groups in Quercus species derived from the analysis of pressure–volume curves. Trees 16:465–472

    Article  Google Scholar 

  • Craft KJ, Ashley MV, Koenig WD (2002) Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in central coastal California. Am J Bot 89:1792–1798

    CAS  Google Scholar 

  • Dervin C (1992) Comment interpréter les résultats d’une analyse factorielle des correspondances? Coll. STAT-ITCF, ITCF, France

  • Díaz Fernández PM, Jiménez Sancho P, Martín Albertos S, De Tuero y Reyna M, Gil Sánchez L (1995) Regiones de procedencia de Quercus robur L., Quercus petraea (Matt.) Liebl. y Quercus humilis Miller. ICONA, Madrid

  • Ducousso A, Bacilieri R, Demesure B, Dumolin-Lapègue S, Kremer A, Petit R, Zanetto A (1997) Structuration géographique de la diversité génétique chez les chênes à feuilles caduques européens. ONF-Bull Tech 33:7–19

    Google Scholar 

  • Dumolin-Lapègue S, Demesure B, Fineschi S, Le Corre V, Petit RJ (1997) Phylogeographic structure of white oaks throughout the European continent. Genetics 146:1475–1487

    PubMed  Google Scholar 

  • Dupouey JL (1983) Analyse multivariable de quelques caractères morphologiques de populations de chênes (Quercus robur L. et Quercus petraea (Matt.) Liebl.) du Hurepoix. Ann Sci For 40:265–282

    Google Scholar 

  • Ehleringer JR, Smedley MP (1989) Stomatal sensitivity and water-use efficiency in oaks and their hybrids. USDA Forest Serv Gen Tech Rep INT-256:98–102. USDA, Washington

  • Fotelli MN, Radoglou KM, Constantinidou HIA (2000) Water stress responses of seedlings of four Mediterranean oak species. Tree Physiol 20:1065–1075

    CAS  PubMed  Google Scholar 

  • Gardiner AS (1970) Pedunculate and sessile oak (Quercus robur L. and Quercus petraea (Matt.) Liebl.). A review of the hybrid controversy. Forestry 43:151–160

    Google Scholar 

  • Govaerts R, Frodin DG (1998) World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Ticodendraceae). Royal Botanic Gardens, Kew

  • Grandjean G, Sigaud P (1987) Contribution à la taxonomie et à l’écologie des chênes du Berry. Ann Sci For 44:35–66

    Google Scholar 

  • Herrán A, Espinel S, Goicoechea PG (1999) Utilización del polimorfismo del ADN de cloroplastos para definir regiones de procedencia materna en los robles blancos de la Península Ibérica. Invest Agric Syst Rec For 8:139–150

    Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Himrane H (2002) Etude de l’hétérogeneité de la progéniture de l’hybride Quercus subpyrenaica E.H. del Villar. CIHEAM, Saragosa

  • Howard DJR, Preszler W, Williams J, Fenchel S, Boecklen WJ (1997) How discrete are oak species? Insights from a hybrid zone between Quercus grisea and Quercus gambelii. Evolution 51:747–755

    Google Scholar 

  • Huguet del Villar EH (1935) Sur le nom de quelques Quercus et la systématique du faginea. Cavanillesia 7:57–70

    Google Scholar 

  • Iestwaart JH, Feij AE (1989) A multivariate analysis of introgression between Q. robur and Q. petraea in The Netherlands. Acta Bot Neerl 38:313–325

    Google Scholar 

  • Jalas J, Suominen J, Lampinen R (1999) Atlas Florae Europaeae. (Available at http://www.helsinki.fi/kmus/afe.html)

  • Jarbeau JA, Ewers FW, Davis SD (1995) The mechanism of water-stress-induced embolism in two species of chaparral shrubs. Plant Cell Environ 18:189–196

    Google Scholar 

  • Jensen RS, Essaugh NH (1976) Numerical taxonomic studies of hybridization in Quercus. Syst Bot 1:1–19

    Google Scholar 

  • Jiggins CD, Mallet J (2000) Bimodal hybrid zones and speciation. Tree 15:250–255

    Article  PubMed  Google Scholar 

  • Jiménez Sancho MP, Díaz Fernández PM, Martín Albertos S, Gil Sánchez L (1998) Regiones de procedencia de Quercus pyrenaica Willd., Quercus faginea Lam. y Quercus canariensis Willd. OAPN, Madrid

  • Kissling P (1977) Les poils des quatre espèces de chênes du Jura (Quercus pubescens, Q. petraea, Q. robur et Q. cerris). Ver Schweiz Bot Ges 87:1–18

    Google Scholar 

  • Kleinschmit J, Kleinschmit JGR (2000) Quercus roburQuercus petraea: a critical review of the species concept. Glas Sum Pokuse 37:441–452

    Google Scholar 

  • Kleinschmit JRG, Bacilieri R, Kremer A, Roloff A (1995) Comparison of morphological traits of pedunculate oak (Quercus robur L.) and sessile oak (Quercus petraea (Matt.) Liebl. Silv Genet 44:256–269

    Google Scholar 

  • Kremer A, Dupouey JL, Deans JD, Cottrell J, Csaikl U, Finkeldey R, Espinel S, Jensen J, Kleinschmit J, Dam BV, Ducousso A, Forrest I, Heredia UL, Lowe AJ, Tutkova M, Munro RC, Steinhoff S, Badeau V (2003) Morphological variation in mixed oak stands (Quercus robur and Quercus petraea) is stable across western European populations. Ann Sci For 59:777–787

    Article  Google Scholar 

  • Krüssman G (1986) Manual of cultivated broad-leaves trees and shrubs. Timber, Portland

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

  • Loidi J, Herrera M (1990) The Quercus pubescens and Quercus faginea forests in the Basque Country (Spain): distribution and typology in relation to climatic factors. Vegetatio 90:81–92

    Google Scholar 

  • Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogenet Evol 12:333–349

    Article  CAS  PubMed  Google Scholar 

  • Manos PS, Zhou ZK, Cannon CH (2001) Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. Int J Plant Sci 162:1361–1379

    Article  Google Scholar 

  • Muir G, Fleming CC, Schlötterer Ch (2000) Species status of hybridizing oaks. Nature 405:1016

    CAS  PubMed  Google Scholar 

  • Nardini A, Pitt F (1999) Drought resistance of Quercus pubescens as a function of root hydraulic conductance, xylem embolism and hydraulic architecture. New Phytol 143:485–493

    Article  Google Scholar 

  • Nardini A, LoGullo MA, Salleo S (1998) Seasonal changes of root hydraulic conductance (K-RL) in four forest trees: an ecological interpretation. Plant Ecol 139:81–90

    Article  Google Scholar 

  • Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann Sci For 50:25–34

    Google Scholar 

  • Olalde M, Herrán A, Espinel S, Goicoechea PG (2002) White oaks phylogeography in the Iberian Peninsula. For Ecol Manage 156:89–102

    Article  Google Scholar 

  • Olsson U (1975) A morphological analysis of phenotypes in populations of Quercus (Fagaceae) in Sweden. Bot Not 128:53–68

    Google Scholar 

  • Pammenter NW, Vander Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593

    PubMed  Google Scholar 

  • Pearcy RW, Yang W (1996) A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants. Oecologia 108:1–12

    Google Scholar 

  • Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu J-L, Kremer A (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manage 156:49–74

    Article  Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization. Crit Rev Plant Sci 12:213–241

    CAS  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation, and speciation. Heredity 83:363–372

    Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Rivas-Martínez S, Sáenz C (1991) Enumeración de los Quercus de la Península Ibérica. Rivasgodaya 6:101–110

    Google Scholar 

  • Rushton BS (1978) Quercus robur L. and Quercus petraea (Matt.) Liebl.: a multivariate approach to the hybrid problem. I. Data acquisition, analysis and interpretation. Watsonia 12:81–101

    Google Scholar 

  • Rushton BS (1983) An analysis of variation of leaf characters in Quercus robur L. and Quercus petraea (Matt.) Liebl. population samples from Northern Ireland. Ir For 40:52–77

    Google Scholar 

  • Rushton BS (1993) Natural hybridization within the genus Quercus. Ann Sci For 50:73–91

    Google Scholar 

  • Schwarzbach AE, Donovan LA, Rieseberg LH (2001) Transgressive character expression in a hybrid sunflower species. Am J Bot 88:270–277

    PubMed  Google Scholar 

  • Schweitzer JA, Martinsen GD, Whitham TG (2002) Cottonwood hybrids gain fitness traits of both parents: a mechanism for their long-term persistence? Am J Bot 89:981–990

    Google Scholar 

  • Sisó S, Camarero JJ, Gil-Pelegrín E (2001) Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: a new interpretation of leaf lobation. Trees 15:341–345

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman, New York

  • Tognetti R, Longobucco A, Raschi A (1998) Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occurring in a Mediterranean coppice stand in central Italy. New Phytol 139:437–447

    Article  Google Scholar 

  • Tyree MT (1999) Water relations and hydraulic architecture. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Dekker, New York, pp 221–268

  • Tyree MT, Cochard H (1996) Summer and winter embolism in oak: impact on water relations. Ann Sci For 53:173–180

    Google Scholar 

  • Valladares F, Skillman JB, Pearcy RW (2002) Convergence in light capture efficiencies among tropical forest understory plants with contrasting crown architectures: a case of morphological compensation. Am J Bot 89:1275–1284

    Google Scholar 

  • Williams DG, Ehleringer JR (2000) Carbon isotope discrimination and water relations in oak hybrid populations in southwestern Utah. West N Am Nat 60:121–129

    Google Scholar 

Download references

Acknowledgements

This work was supported by 1FD97-0911-C03-01 project (Subpr. 1) and AECI grant to H.H. We sincerely thank F. Valladares (CCMA, CSIC) and J. Esteso (CITA) for their advices on the use of Y-Plant software. We also thank M.A. Pascual and J. Voltas for their assistance, and P.G. Goicoechea for improving an earlier version of the manuscript. JJC acknowledges the financial support of a INIA-DGA contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eustaquio Gil-Pelegrín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Himrane, H., Camarero, J.J. & Gil-Pelegrín, E. Morphological and ecophysiological variation of the hybrid oak Quercus subpyrenaica (Q. faginea × Q. pubescens). Trees 18, 566–575 (2004). https://doi.org/10.1007/s00468-004-0340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-004-0340-0

Keywords

Navigation