Skip to main content
Log in

Genetic differentiation in relation to seed weights in wild soybean species (Glycine soja Sieb. & Zucc.)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Seed weight is one of the most important botanical and phylogenetic characteristics. The study objective was to understand whether there is genetic difference in different seed weights of wild soybean (Glycine soja Sieb. & Zucc.). A total of 563 wild soybean samples, which belonged separately to genebank germplasm accessions (220 samples), one regional population samples (293 plants) and one natural population (150 plants), were analyzed using microsatellite markers. Of four size classes, the smallest seed size type had the highest coefficient of variation in seed weight; small and large seed types had relatively great genetic differences. In the national genebank germplasm accessions, genetic diversity gradually decreased from quantitatively dominant small and middling seed types to less frequent large seed types. In the regional and natural populations, generally, small to middling seed sizes had higher genetic diversity than the smallest and larger seed sizes. Cluster analysis revealed genetic differences in seed size traits. The semi-wild type (Glycine gracilis Skvortzow) was the most genetically differentiated from other seed sizes. However, it was also clearly shown that the phylogenic genetic differentiation among seed sizes was less than the genetic differentiation among geographical habitat populations in the wild soybean species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe J, Hasegawa A, Fukushi H, Mikami T, Ohara M, Shimamoto Y (1999) Introgression between wild and cultivated soybean of Japan revealed by RFLP analysis for chloroplast DNA. Econ Bot 53:285–291

    Article  Google Scholar 

  • Baker HG (1972) Seed weight in relation to environmental conditions in California. Ecology 53:997–1010

    Article  Google Scholar 

  • Birot PY (1978) Variabilité géographique du poids de la grane de Pinus contorta. Silvae Genet 27:32–40

    Google Scholar 

  • Boulli A, Baaziz M, M’Hirit O (2001) Polymorphism of natural populations of Pinus halepensis Mill. In Morocco as revealed by morphological characters. Euphytica 119:309–316

    Article  Google Scholar 

  • Broich SL, Palmer RG (1980) A cluster analysis of wild and domesticated soybean phenotypes. Euphytica 29:23–32

    Article  Google Scholar 

  • Close PS, Shoemaker RC, Keim P (1989) Distribution of restriction site polymorphism within the chloroplast genome of the genus Glycine, subgenus Soja. Theor Appl Genet 77:768–776

    Article  CAS  PubMed  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark GK, Kahler AL, Kaya N, Vantoai TT, Lohnes DG, Chung J, Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fasoula VA, Harris DK, Boerma HR (2004) Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Sci 44:1218–1225

    Article  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny inference package) version 3.5c. University of Washing ton press, Seattle

  • Fujita R, Ohara M, Okazaki K, Shimamoto Y (1997) The extent of natural cross-pollination in wild soybean (Glycine soja). J Hered 88:124–128

    Article  Google Scholar 

  • Fukuda Y (1933) Cytogenetical studies on the wild and cultivated Manchurian soybeans (Glycine L.). Jpn J Bot 6:489–506

    Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, New York

    Google Scholar 

  • Harper JL, Lovell PH, Moore KG (1970) The shapes and sizes of seeds. Ann Rev Ecol Syst 1:327–356

    Article  Google Scholar 

  • Hermann FJ (1962) A revision of the genus Glycine and its immediate allies. USDA Tech Bull 1268:1–79

    Google Scholar 

  • Hymowitz Y (1970) On the domestication of the soybean. Econ Bot 24:408–421

    Article  Google Scholar 

  • Hyten DL, Pantalone VR, Same CF, Saxton AM, Landau-Fllis D, Stefaniak TR, Schmidt ME (2004) Seed quality QTL in a prominent soybean population. Theor Appl Genet 109:552–561

    Article  CAS  PubMed  Google Scholar 

  • Janzen DH (1977) Variation in seed weight in Costa Rican Cassia grandis Leguminosae). Trop Ecol 18:177–186

    Google Scholar 

  • Janzen DH (1978) Inter- and inter-crop variation in seed weight of Costa Rican Ateleia herbert-smithii Pitt. (Leguminosae). Brenesia 14–15:311–323

    Google Scholar 

  • Kiang YT, Chiang YC, Kaizuma N (1992) Genetic diversity in natural populations of wild soybean in Iwate prefecture, Japan. J Hered 83:325–329

    Google Scholar 

  • Kuroda Y, Kaga A, Tomooka N, Vaughan DA (2006) Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation. Mol Ecol 15:959–974

    Article  CAS  PubMed  Google Scholar 

  • Leishman MR, Wright IJ, Moles AT, Westoby M (2000) The evolutionary ecology of seed size. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities, 2nd edn. CAB International, Wallingford, pp 31–57

    Google Scholar 

  • Li FS (1990) Wild soybean resource catalogue. China Agriculture Press, Beijing

    Google Scholar 

  • Li FS, Chang RZ, Shu SZ (1983) The plants of the genus Glycine in China. (China) Soybean Sci 2:109–115 (in Chinese)

    Google Scholar 

  • Li XH, Wang KJ, Jia JZ (2009) Genetic diversity and differentiation of Chinese wild soybean germplasm (G. soja Sieb. & Zucc.) in geographical scale revealed by SSR markers. Plant Breed 128:658–664

    Article  Google Scholar 

  • Li YH, Li W, Zhang C, Yang L, Chang RZ, Gaut BS, Qiu LJ (2010) Genetic diversity in domesticated soybean (Glycine max) and its wild progenitor (Glycine soja) for simple sequence repeat and single-nucleotide polymorphism loci. New Phytol 188:242–253

    Article  CAS  PubMed  Google Scholar 

  • Liu BH, Fujita T, Yan ZH, Sakamoto S, Xu DH, Abe J (2007) QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot 100:1027–1038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moles AT, Westoby M (2003) Latitude, seed predation and seed weight. J Biogeogr 30:105–128

    Article  Google Scholar 

  • Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M (2005) A brief history of seed size. Science 307:576–580

    Article  CAS  PubMed  Google Scholar 

  • Murray BR, Brown AHD, Grace P (2003) Geographical gradient in seed size among and within perennial Australian Glycine species. Aust J Bot 51:47–57

    Article  Google Scholar 

  • Murray BR, Brown AHD, Dickman CR, Crowther MS (2004) Geographical gradients in seed weight in relation to climate. J Biogeogr 31:379–388

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  • Nienstadt H, Olson JS (1961) Effects of photoperiod and source on seedling growth of Eastern Hemlock. For Sci 1:85–96

    Google Scholar 

  • Pei YL, Wang L, Song G, Wang LZ (1996) Studies on genetic diversity of Glycine soja-isozyme variation in four populations. (China)Soybean Sci 15:302–308 (in Chinese)

    Google Scholar 

  • Primack RB, Antonovics J (1981) Experimental ecological genetics in Plantago. V. Components of seed yield in the ribwort plantain Plantago lanceolata L. Evolution 35:1069–1079

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaal BA (1980) Reproductive capacity and seed size in Lupinus texensis. Am J Bot 67:703–709

    Article  Google Scholar 

  • Schimpf DJ (1977) Seed weight of Amaranthus retroflexus in relation to moisture and length of growing season. Ecology 58:450–453

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Ubana

    Google Scholar 

  • Sisson HD, Brim CA, Levings CS (1978) III. Characterization of cytoplasmic diversity in soybeans by restriction endonuclease analysis. Crop Sci 18:991–996

    Article  CAS  Google Scholar 

  • Skvortzow BW (1927) The soybean-wild and cultivated in Eastern Asia. In: Proceedings of Manchurian Res Soc Publ Ser A Nat Hist History Sect No. 22:1–8

  • Thompson JN (1984) Variation among individual seed weight s in Lomatium grayi (Umbelliferae) under controlled conditions: magnitude and partitioning of the variance. Ecology 65:626–631

    Article  Google Scholar 

  • Wang KJ, Li XH (2011) Interspecific gene flow and the origin of semi-wild soybean revealed by capturing the natural occurrence of introgression between wild and cultivated soybean populations. Plant Breed 130:117–127

    Article  Google Scholar 

  • Wang KJ, Li XH (2012) Genetic characterization and gene flow in different geographical-distance neighbouring natural populations of wild soybean (Glycine soja Sieb. & Zucc.) and implications for protection from GM soybeans. Euphytica 186:817–830

    Article  CAS  Google Scholar 

  • Wang KJ, Takahata Y (2007) A preliminary comparative evaluation of genetic diversity between Chinese and Japanese wild soybean (Glycine soja) germplasm pools using SSR markers. Genet Resour Crop Evol 54:157–165

    Article  CAS  Google Scholar 

  • Wang KJ, Li FS, Chao YS, Zhou T (2001a) Quantitative character structures of the natural populations of wild soybean in Hebei province. (China)Acta Phytoecol Sin 25:351–358 (in Chinese)

    Google Scholar 

  • Wang KJ, Takahata Y, Kaizuma N (2001b) Wild soybean (Glycine soja) germplasm resources and utilization in China. Agri Hort 77:1101–1106 (in Japanese)

    Google Scholar 

  • Wang B, Chang RZ, Tao L, Guan RX, Yan L, Zhang MH, Feng ZF, Qiu LJ (2003) Identification of SSR primer numbers for analyzing genetic diversity of Chinese cultivated soybean. Mol Plant Breed 1:82–88 (in Chinese)

    CAS  Google Scholar 

  • Wang KJ, Li XH, Zhang ZW, Li FS, Chao YS (2005) Components and distribution of 100-seed weight in natural populations of wild soybean. (China) Soybean Sci 24:243–248 (in Chinese)

    CAS  Google Scholar 

  • Wang KJ, Li XH, Li FS (2008) Phenotypic diversity of the big seed type subcollection of wild soybean (Glycine soja Sieb. et Zucc.) in China. Genet Resour Crop Evol 55:1335–1346

    Article  Google Scholar 

  • Wang KJ, Li XH, Zhang JJ, Chen H, Zhang ZL, Yu GD (2010) Natural introgression from cultivated soybean (Glycine max) into wild soybean (Glycine soja) with the implications for origin of populations of semi-wild type and for biosafety of wild species in China. Genet Resour Crop Evol 57:747–761

    Article  Google Scholar 

  • Wang KJ, Li XH, Liu Y (2012) Fine-scale phylogenetic structure and major events in the history of the current wild soybean (Glycine soja) and taxonomic assignment of semi-wild type (Glycine gracilis Skvortz.) within the Chinese Subgenus Soja. J Hered 103(1):13–27

    Article  PubMed  Google Scholar 

  • Wen ZX, Ding YL, Zhao TJ, Gai JY (2009) Genetic diversity and peculiarity of annual wild soybean (G. soja Sieb. et Zucc.) from various eco-regions in China. Theor Appl Genet 119:371–381

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Chang RZ, Cao YS, Zhang MH, Feng ZF, Qiu LJ (2003) Selection of core SSR loci by using Chinese autumn soybean. Sci Agric Sin 36:360–366 (in Chinese)

    CAS  Google Scholar 

  • Xu LH (2007) Genetic diversity in natural populations of wild soybeans from different latitudes in China. Master’s degree thesis of Ning Xia University, Yinchun, China (in Chinese)

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE software package version 1.31 for population genetic analysis, University of Alberta

  • Yu H, Kiang YT (1993) Genetic variation in South Korean natural populations of wild soybean (Glycine soja). Euphytica 68:213–221

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Projects "Crop Germplasm Resources Protection (Item No. 2130135-2-09)" from the Ministry of Agriculture of the People’s Republic of China, "Environmental and Biosafety Assessment of Transgenetic Maize, Soybean and Wheat (Item No. 2008ZX08011-003)" from the Ministry of Science and Technology of the People’s Republic of China, and “Sci and Teck Innovation Program of Chinese Academy of Agricultural Sciences”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Jing Wang.

Additional information

X.-H. Li is the joint first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, KJ., Li, XH. & Yan, MF. Genetic differentiation in relation to seed weights in wild soybean species (Glycine soja Sieb. & Zucc.). Plant Syst Evol 300, 1729–1739 (2014). https://doi.org/10.1007/s00606-014-0998-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-0998-8

Keywords

Navigation