Skip to main content
Log in

Is flower/corolla closure linked to decrease in viability of desiccation-sensitive pollen? Facts and hypotheses: a review of current literature with the support of some new experimental data

  • Review
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Pollen hydration status at dispersal depends on many parameters and on this basis two main groups of grains may be distinguished: those with a low water content are usually named orthodox or desiccation-resistant, while those with a higher water content at dispersal are known as recalcitrant or desiccation-sensitive due to their reduced mechanisms to keep water constant. On exposure, the latter lose water and die quickly. Although the end of flower receptivity may occur in different ways, in species possessing recalcitrant pollen it often consists in corolla closure. In addition to data available from current literature, also a new set of experiments was performed: the viability of pollen of eight entomophilous species having nectar as pollinator reward, desiccation-sensitive pollen and corolla closure at the end of receptivity, irrespective of pollination, was tested from the onset of anthesis until flower closure using a fluorochromatic reaction. Pollen viability fell sharply in all species, albeit at different rates, depending on initial water content, and may be also on types of carbohydrate reserves and inherent enzymes interconverting them. On the basis of experimental data and the literature, the authors speculate on the effects of corolla closure: it avoids dispersal of pollen with reduced viability, it avoids collection of unconsumed nectar while facilitating its reabsorption by the nectary parenchyma and its utilization for other purposes, and it avoids contamination by moulds and bacterial spores that could penetrate the plant via the nectar and nectary parenchyma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ashman TL, Schoen DJ (1996) Floral longevity: fitness consequences and resource costs. In: Lloyd DG, Barrett SCH (eds) Floral biology: studies on floral evolution in animal-pollinated plants. Chapman et Hall, New York, pp 112–139

    Chapter  Google Scholar 

  • Baker HG, Baker I (1975) Studies of nectar-constitution and pollinator-plant coevolution. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. Symposium V, First International Congress of systematic and evolutionary biology, Boulder, Colorado, Texas University Press, Austin, pp 100–140 August 1973

  • Bernardello G (2007) A systematic survey of floral nectaries. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 19–121

    Chapter  Google Scholar 

  • Buitink J, Claessens MM, Hemminga MA, Hoekstra FA (1998) Influence of water content and temperature on molecular mobility and intracellular glasses and pollen. Plant Physiol 118:531–541

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carrió E, Herreros R, Bacchetta G, Güemes J (2008) Evidence of delayed selfing in Fumana juniperina (Cistaceae). Int J Plant Sci 169:761–767

    Article  Google Scholar 

  • Carrizzo Garcia C, Nepi M, Pacini E (2006) Structural aspects and ecophysiology of anther opening in Allium triquetrum. Ann Bot 97:521–527

    Article  Google Scholar 

  • Carrizzo Garcia C, Guarnieri M, Pacini E (2010) Soluble carbohydrate content in tomato pollen and its variations along and between blooming periods. Sci Hort 125:524–527

    Article  CAS  Google Scholar 

  • Dafni A (1992) Pollination ecology: a practical approach. IRL Press at Oxford University Press, Oxford

    Google Scholar 

  • Du W, Qin KZ, Wang XF (2012) The mechanism of stamen movement in Chimonanthus praecox (Calycanthaceae): differential cell growth rates on the adaxial and abaxial surfaces of filaments after flower opening. Plant Syst Evol 298:561–567

    Article  CAS  Google Scholar 

  • Edwards J, Jordan JS (1992) Reversible anther opening in Lilium philadelphicum (Liliaceae) a possible means of enhancing male fitness. Amer J Bot 79:144–148

    Article  Google Scholar 

  • Eisikowitch D, Lazar Z (1987) Flower change in Oenothera drummondii Hooker as a response to pollinators’ visits. Bot J Linn Soc 95:101–111

    Article  Google Scholar 

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Firon N, Nepi M, Pacini E (2012) Water status and associated processes mark critical stages in pollen development and functioning. Ann Bot 109:143–159

    Article  CAS  Google Scholar 

  • Franchi GG, Bellani L, Nepi M, Pacini E (1996) Types of carbohydrate reserves in pollen: systematic distribution and ecophysiological significance. Flora 191:143–159

    Google Scholar 

  • Franchi GG, Nepi M, Dafni A, Pacini E (2002) Partially hydrated pollen: taxonomic distribution, ecological and evolutionary significance. Plant Syst Evol 234:211–227

    Article  CAS  Google Scholar 

  • Franchi GG, Piotto B, Nepi M, Baskin CC, Baskin JM, Pacini E (2011) Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal, and survival. J Exp Bot 62:5267–5281

    Article  PubMed  CAS  Google Scholar 

  • Free JB (1970) Insect pollination of crops. Academic Press, London

    Google Scholar 

  • Galetto L, Bernardello G (2005) Nectar. In: Dafni A, Kevan PG, Husband BB (eds) Practical pollination biology. Enviroquest Ltd., Cambridge, pp 261–313

    Google Scholar 

  • Guarnieri M, Speranza A, Nepi M, Artese D, Pacini E (2006) Ripe pollen carbohydrates in Trachycarpus fortunei: the effect of relative humidity. Sex Plant Reprod 19:117–124

    Article  CAS  Google Scholar 

  • Halket AC (1931) The flowers of Silene saxifraga, L.; an inquiry into the cause of their day closure and the mechanism concerned in effecting their periodic movements. Ann Bot 45:15–36

    Google Scholar 

  • He YP, Duan YW, Liu JQ, Smith WK (2006) Floral closure in response to temperature and pollination in Gentiana straminea Maxim. (Gentianaceae), an alpine perennial in the Qinghai-Tibetan Plateau. Plant Syst Evol 256:17–33

    Article  Google Scholar 

  • Herrera CM, De Vega C, Canto A, Pozo MI (2009) Yeasts in floral nectar: a quantitative survey. Ann Bot 103:1415–1423

    Article  PubMed Central  PubMed  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1970) Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technol 45:115–120

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1992) Intracellular motility, the actin cytoskeleton and germinability in the pollen of wheat (Triticum aestivum L.). Sex Plant Reprod 5:247–255

    Article  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Heslop-Harrison JS (1997) Motility in ungerminated grass pollen: association of myosin with polysaccharide-containing wall-precursors bodies (P-particles). Sex Plant Reprod 10:65–66

    Article  Google Scholar 

  • Huda MK, Wilcock CC (2012) Rapid flower senescence following male function and breeding systems of some tropical orchids. Plant Biol 14:278–284

    Article  PubMed  CAS  Google Scholar 

  • Kalisz S, Vogler DW (2003) Benefits of autonomous selfing under unpredictable pollinator environments. Ecology 84:2928–2942

    Article  Google Scholar 

  • Kerner von Marilaun A (1895) The natural history of plants. Their forms, growth, reproduction and distribution. Henry Haly, New York

  • Kevan PG, Eisikowitch D, Fowle S, Thomas K (1988) Yeast-contaminated nectar and its effects on bee foraging. J Apicult Res 27:26–29

    Google Scholar 

  • Kress WJ (1981) Sibling competition and evolution of pollen unit, ovule number and pollen vector in angiosperms. Syst Bot 6:101–112

    Article  Google Scholar 

  • Kubizki K, Kadereit JW (eds) (2004) The families and Genera of Vascular Plants, Vol. VII. Springer, Berlin, p 337

  • Marcellos H, Perryman T (1988) Pollination and fertilization in crops of Vicia faba. Aust J Agric Res 39:579–587

    Article  Google Scholar 

  • Nepi M, Franchi GG (2000) Cytochemistry of mature pollen. Plant Syst Evol 22:45–62

    Article  Google Scholar 

  • Nepi M, Pacini E (1993) Pollination, pollen viability and pistil receptivity in Cucurbita pepo. Ann Bot 72:527–536

    Article  Google Scholar 

  • Nepi M, Stpiczyńska M (2008) The complexity of nectar: secretion and resorption dynamically regulate nectar features. Naturwissenschaft 95:177–184

    Article  CAS  Google Scholar 

  • Nepi M, Franchi GG, Pacini E (2001) Pollen hydration status at dispersal: cytophysiological features and strategies. Protoplasma 216:171–180

    Article  PubMed  CAS  Google Scholar 

  • Nepi M, Cresti L, Guarnieri M, Pacini E (2010) Effect of relative humidity on water content, viability and carbohydrate profile of Petunia hybrida and Cucurbita pepo. Plant Syst Evol 284:57–64

    Article  CAS  Google Scholar 

  • Nicolson SW, Nepi M, Pacini E (eds) (2007) Nectaries and nectar. Springer, Dordrecht

    Google Scholar 

  • Niu Y, Yang Y, Zhang ZQ, Li ZM, Sun H (2011) Flower closure induced by pollination in gynodioecious Cyananthus dalavayi (Campanulaceae): effects of pollen load and type, floral morph and fitness consequences. Ann Bot 108:1257–1268

    Article  PubMed Central  PubMed  Google Scholar 

  • Overland L (1960) Endogenous rhythm in opening and odor of flowers of Cestrum nocturnum. Amer J Bot 47:378–382

    Article  Google Scholar 

  • Pacini E (1990) Harmomegathic characters of Pteridophyta spores and Spermatophyta pollen. Plant Syst Evol Suppl 5:53–69

    Article  Google Scholar 

  • Pacini E (1997) Tapetum character states: analytical keys for tapetum types and activities. Can J Bot 75:1448–1459

    Article  Google Scholar 

  • Pacini E, Franchi GG (1982) Germination of pollen inside anthers in some non-cleistogamous species. Caryologia 35:205–215

    Article  Google Scholar 

  • Pacini E, Franchi GG (1998) Pollen dispersal units, gynoecium and pollination. In: Owens SJ, Rudall PJ (eds) Reproductive biology in systematics, conservation and economic botany. Royal Botanic Gardens, Kew, pp 183–195

    Google Scholar 

  • Pacini E, Franchi GG, Lisci M, Nepi M (1997) Pollen viability related to type of pollination in six angiosperm species. Ann Bot 80:83–87

    Article  Google Scholar 

  • Pacini E, Guarnieri M, Nepi M (2006) Pollen carbohydrate and water content during development, presentation and dispersal: a short review. Protoplasma 228:73–77

    Article  PubMed  CAS  Google Scholar 

  • Pozo MI, De Vega C, Canto A, Herrera CM (2009) Presence of yeasts in floral nectar is consistent with the hypothesis of microbial-mediated signaling in plant-pollinator interactions. Plant Signal Behav 4:1102–1104

    Article  PubMed Central  PubMed  Google Scholar 

  • Pozo MI, Herrera CM, Bazaga P (2011) Species richness of yeast communities in floral nectar of southern Spanish plants. Microb Ecol 61:82–91

    Article  PubMed  Google Scholar 

  • Pressman E, Peet MM, Pharr DM (2002) The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann Bot 90:631–636

    Article  PubMed  CAS  Google Scholar 

  • Primack RB (1985) Longevity of individual flowers. Ann Rev Ecol Syst 16:15–37

    Article  Google Scholar 

  • Rogers HJ (2006) Programmed cell death in floral organs: how and why do flowers die? Ann Bot 97:309–315

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sazima M, Sazima I, Carvalho-Okano RM (1985) Biologia floral de Dalechampia stipulacea (Euphorbiaceae) e sua polinização por Euglossa melanotricha (Apidae). Rev Brasil Biol 45:85–93

    Google Scholar 

  • Schoen DJ, Ashman T-L (1995) The evolution of floral longevity: resource allocation to maintenance versus construction of repeated parts in modular organisms. Evolution 49:131–139

    Article  Google Scholar 

  • Sigmond H (1929) Über das Aufblühen von Hedera helix L. und die Beeinflussung dieses Vorganges durch das Licht. Beih Bot Zbl 46:68–92

    Google Scholar 

  • Sun SG, Guo YH, Gituru RW, Huang SQ (2005) Corolla wilting facilitates delayed autonomous self-pollination in Pedicularis dunniana (Orobanchaceae). Plant Syst Evol 251:229–237

    Article  Google Scholar 

  • Teppner H (2009) The easier proof for the presence of pollenkitt. Phyton 48:169–198

    Google Scholar 

  • van Doorn WG (1997) Effects of pollination on floral attraction and longevity. J Exp Bot 48:1615–1622

    Google Scholar 

  • van Doorn WG, Stead AD (1997) Abscission of flowers and floral parts. J Exp Bot 48:821–837

    Article  Google Scholar 

  • van Doorn WG, van Meeteren U (2003) Flower opening and closure: a review. J Exp Bot 54:1801–1812

    Article  PubMed  Google Scholar 

  • Vogel S (1954) Blutenbiologische typen als elements der sippengliederrung. Fischer, Jena

    Google Scholar 

  • Weber JJ, Goodwillie C (2013) Variation in floral longevity in the genus Leptosiphon: mating system consequences. Plant Biol 15:220–225

    Article  PubMed  CAS  Google Scholar 

  • Wodehouse RP (1935) Pollen grains. McGraw-Hill, New York

    Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Ann Rev Plant Biol 61:209–234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Franchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franchi, G.G., Nepi, M. & Pacini, E. Is flower/corolla closure linked to decrease in viability of desiccation-sensitive pollen? Facts and hypotheses: a review of current literature with the support of some new experimental data. Plant Syst Evol 300, 577–584 (2014). https://doi.org/10.1007/s00606-013-0911-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-013-0911-x

Keywords

Navigation