Skip to main content
Log in

Assessment of molecular diversity and evolutionary relationship of kenaf (Hibiscus cannabinus L.), roselle (H. sabdariffa L.) and their wild relatives

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Kenaf (Hibiscus cannabinus L.) and roselle (H. sabdariffa L.) are valuable fibre crop species with diverse end use. Phylogenetic relationship of 73 accessions of kenaf, roselle and their wild relatives from 15 countries was assessed using 44 inter-simple sequence repeat (ISSR) and jute (Corchorus olitorius L.) specific simple sequence repeats (SSR) markers. A total of 113 alleles were identified of which 61.95 % were polymorphic. Jute specific SSR markers exhibited high polymorphism and resolving power in kenaf, although ISSR markers exhibited higher resolving power than SSR markers. Number of polymorphic alleles varied from 1 to 5 for ISSR and 1 to 6 for SSR markers. Cultivated species exhibited higher allele polymorphism (57 %) than the wild species (35 %), but the improved cultivars exhibited lower genetic diversity compared to germplasm accessions. Accessions with common genetic lineage and geographical distribution clustered together. Indian kenaf varieties were distinct from cultivars bred in other countries and shared more genetic homology with African accessions. High genetic diversity was observed in the Indian (J = 0.35–0.74) and exotic kenaf germplasm collections (J = 0.38–0.79), suggesting kenaf might have been introduced in India from Africa through Central Asia during early domestication. Genetic similarity-based cluster analysis was in close accordance with taxonomic classification of Hibiscus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akpan GA, Hossain MG (1998) Karyotypes and evolutionary relations of Hibiscus asper Hook., H. cannabinus L. and H. surattensis L. (Malvaceae). Bot J Linn Soc 126:207–216

    Google Scholar 

  • Alvarez AE, van de Wiel CCM, Smulders MJM, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103:1283–1292

    Article  CAS  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic-linkage maps. Genome 36:181–186

    Article  PubMed  CAS  Google Scholar 

  • Baldwin BS, Hollowell JE, Mosley JW, Cossar RD (2006) Registration of ‘Whitten’ kenaf. Crop Sci 46:988–989

    Article  Google Scholar 

  • Barbará T, Palma-Silva C, Paggi GM, Bered F, Fay MF, Lexer C (2007) Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol Ecol 16:3759–3767

    Article  PubMed  Google Scholar 

  • Berger J (1969) The World’s major fibre crops their cultivation and manuring. Centre d’Etude de l’Azote, Switzerland

    Google Scholar 

  • Cheng Z, Sameshima K, Chen JK (2002) Genetic variability and relationship of kenaf germplasm based on RAPD analysis. China’s Fiber Crops 24:1–11

    Google Scholar 

  • Cheng Z, Lu BR, Sameshima K, Chen JK (2004) Identification and genetic relationships of kenaf germplasm revealed by AFLP analysis. Genet Resour Crop Evol 51:393–401

    Article  CAS  Google Scholar 

  • Coetzee R, Herselman L, Labuschagne MT (2008) Genetic diversity analysis of kenaf (Hibiscus cannabinus L.) using AFLP (amplified fragment length polymorphism) markers. Plant Genet Resour Charact Util 7:122–126

    Article  Google Scholar 

  • Dempsey JM (1975) Fibre crops. Rose Printing Company, Tallahassee

    Google Scholar 

  • Gascuel O (1997) Concerning the NJ algorithm and its unweighted version UNJ. In: Mirkin B, McMorris FR, Roberts F, Rzhetsky A (eds) Mathematical hierarchies and biology, DIMACS series in discrete mathematics and theoretical computer science. American Mathematical Society, Providence, pp 149-171

  • Haarer AE (1952) Jute substitute fibres. Wheatland Journals Ltd., UK

    Google Scholar 

  • Huo G, Li D, Chen A (2009) Genetic diversity analysis of 44 shares of Hibiscus cannabinus L. germplasm resources using ISSR molecular marker. Agric Sci Technol 10:63–67

    CAS  Google Scholar 

  • Joshi P, Dhawan V (2007) Assessment of genetic fidelity of micropropagated Swertia chirayita plantlets by ISSR marker assay. Biol Plant 51:22–26

    Article  CAS  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Kim WJ, Kim DS, Kim SH, Kim JB, Goh EJ, Kang SY (2010) Analysis of genetic similarity detected by AFLP and PCoA among genotypes of kenaf (Hibiscus cannabinus L.). J Crop Sci Biotech 13:243–249

    Article  Google Scholar 

  • Kuleung C, Baenziger PS, Dweikat I (2004) Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet 108:1147–1150

    Article  PubMed  CAS  Google Scholar 

  • Maiti RK (1969) Hibiscus vitifolius, a new fibre crop. Econ Bot 23:141–147

    Article  Google Scholar 

  • Maiti RK, Rodriguez HG, Satya P (2010) Horizon of world plant fibres: an insight. Pushpa Publishing House, Kolkata

    Google Scholar 

  • Menzel MY, Wilson FD (1961) Chromosome and crossing behavior of Hibiscus cannabinus, H. acetosella and H. radiatus. Am J Bot 48:651–657

    Article  Google Scholar 

  • Menzel MY, Wilson FD (1966) Hybrids and genome relations of Hibiscus sabdariffa, H. meuesei, H. radiatus and H. acetosella. Am J Bot 53:270–275

    Article  Google Scholar 

  • Mir RR, Banerjee S, Das M, Gupta V, Tyagi AK, Sinha MK, Balyan HS, Gupta PK (2009) Development and characterization of large-scale simple sequence repeats in jute. Crop Sci 49:1687–1694

    Article  CAS  Google Scholar 

  • Mondini L, Noorani A, Pagnotta MA (2009) Assessing plant genetic diversity by molecular tools. Diversity 1:19–35

    Article  CAS  Google Scholar 

  • Paul TK (1993) Malvaceae. In: Sharma BD, Sanjappa M (eds) Flora of India 3. Botanical Survey of India, Calcutta, pp 257–394

  • Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287

    Article  PubMed  CAS  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://www.darwin.cirad.fr/darwin

  • Pfeil BE, Brubaker CL, Craven LA, Crisp MD (2002) Phylogeny of Hibiscus and the Tribe Hibisceae (Malvaceae) Using Chloroplast DNA Sequences of ndhF and the rpl16 Intron. Syst Bot 27(2):333–350

    Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comprising PCR primers applied to ISSR fingerprinting of potato accessions. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Qi J, Xu J, Li A, Wang X, Zhang G, Su J, Liu A (2011) Analysis of genetic diversity and phylogenetic relationship of kenaf germplasm by SRAP. J Nat Fibers 8:99–110

    Article  CAS  Google Scholar 

  • Rajwade AV, Arora RS, Kadoo NY, Harsulkar AM, Ghorpade PB, Gupta VS (2010) Relatedness of Indian flax genotypes (Linum usitatissimum L.): an inter-simple sequence repeat (ISSR) primer assay. Mol Biotechnol 45:161–170

    Article  PubMed  CAS  Google Scholar 

  • Rakshit SC, Kundu BC (1970) Revision of the Indian species of Hibiscus. Bull Bot Surv India 12:151–175

    Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc numerical taxonomy and multivariate analysis system version 2.1 Manual. Applied Biostatistics Inc., New York

  • Royle JF (1855) The fibrous plants of India fitted for cordage, clothing and paper. Smith, Elder and Co., London

  • Satya P, Karan M, Sarkar D, Sinha MK (2012) Genome synteny and evolution of AABB allotetraploids in Hibiscus section Furcaria revealed by interspecific hybridization, ISSR and SSR markers. Plant Syst Evol 298:1257–1270. doi:10.1007/s00606-012-0632-6

    Article  CAS  Google Scholar 

  • Siepe T, Ventrella D, Lapenta E (1997) Evaluation of genetic variability in a collection of Hibiscus cannabinus (L.) and Hibiscus spp. (L.). Ind Crop Prod 6:343–352

    Article  Google Scholar 

  • Sivarajan VV, Pradeep AK (1996) Malvaceae of southern Peninsular India: a taxonomic monograph. Daya Publishing House, New Delhi

    Google Scholar 

  • Tao AF, Qi JM, Li AQ, Fang PP, Lin LH, Wu JM, Wu WR (2005) The analysis of genetic diversity and relationship of elite kenaf germplasm based on inter-simple sequence repeats. Acta Agron Sin 12:1668–1671

    Google Scholar 

  • Van Borssum Waalkes J (1966) Malesian Malvaceae revised. Blumea 14:1–213

    Google Scholar 

  • Wang A, Yu Z, Ding Y (2009) Genetic diversity analysis of wild close relatives of barley from Tibet and the Middle East by ISSR and SSR markers. C R Biol 332:393–403

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Qi W, Lan T, Chen HD, Xu JT, Su JG, Li AQ, Q JM (2011) Establishment of DNA fingerprintings of kenaf (Hibiscus cannabinus L.) germplasm resources with ISSR molecular markers. Acta Agron Sin 37:1116–1123. doi:10.3724/SP.J.1006.2011.01116

    Article  CAS  Google Scholar 

  • Webber CL III, Liu A (2011) Plant fibres as renewable feedstocks for biofuel and bio-based products. CCG International, St. Paul

    Google Scholar 

  • Wilson FD (2006) A distributional and cytological survey of the presently recognized taxa of Hibiscus section Furcaria (Malvaceae). Bonplandia 15:53–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Satya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satya, P., Karan, M., Kar, C.S. et al. Assessment of molecular diversity and evolutionary relationship of kenaf (Hibiscus cannabinus L.), roselle (H. sabdariffa L.) and their wild relatives. Plant Syst Evol 299, 619–629 (2013). https://doi.org/10.1007/s00606-012-0748-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0748-8

Keywords

Navigation